TU Darmstadt / ULB / TUbiblio

Realistic Dreams: Cascaded Enhancement of GAN-generated Images with an Example in Face Morphing Attacks

Damer, Naser ; Boutros, Fadi ; Saladie, Alexandra Mosegui ; Kirchbuchner, Florian ; Kuijper, Arjan (2019)
Realistic Dreams: Cascaded Enhancement of GAN-generated Images with an Example in Face Morphing Attacks.
10th International Conference on Biometrics Theory, Applications and Systems (BTAS 2019). Tampa, USA (23.09.2019-26.09.2019)
doi: 10.1109/BTAS46853.2019.9185994
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The quality of images produced by generative adversarial networks (GAN) is commonly a trade-off between the model size, its training data needs, and the generation resolution. This trad-off is clear when applying GANs to issues like generating face morphing attacks, where the latent vector used by the generator is manipulated. In this paper, we propose an image enhancement solution designed to increase the quality and resolution of GAN-generated images. The solution is designed to require limited training data and be extendable to higher resolutions. We successfully apply our solution on GAN-based face morphing attacks. Beside the face recognition vulnerability and attack detectability analysis, we prove that the images enhanced by our solution are of higher visual and quantitative quality in comparison to unprocessed attacks and attack images enhanced by state-of-the-art super-resolution approaches.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Damer, Naser ; Boutros, Fadi ; Saladie, Alexandra Mosegui ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Realistic Dreams: Cascaded Enhancement of GAN-generated Images with an Example in Face Morphing Attacks
Sprache: Englisch
Publikationsjahr: 3 September 2019
Verlag: IEEE
Veranstaltungstitel: 10th International Conference on Biometrics Theory, Applications and Systems (BTAS 2019)
Veranstaltungsort: Tampa, USA
Veranstaltungsdatum: 23.09.2019-26.09.2019
DOI: 10.1109/BTAS46853.2019.9185994
URL / URN: https://doi.org/10.1109/BTAS46853.2019.9185994
Kurzbeschreibung (Abstract):

The quality of images produced by generative adversarial networks (GAN) is commonly a trade-off between the model size, its training data needs, and the generation resolution. This trad-off is clear when applying GANs to issues like generating face morphing attacks, where the latent vector used by the generator is manipulated. In this paper, we propose an image enhancement solution designed to increase the quality and resolution of GAN-generated images. The solution is designed to require limited training data and be extendable to higher resolutions. We successfully apply our solution on GAN-based face morphing attacks. Beside the face recognition vulnerability and attack detectability analysis, we prove that the images enhanced by our solution are of higher visual and quantitative quality in comparison to unprocessed attacks and attack images enhanced by state-of-the-art super-resolution approaches.

Freie Schlagworte: Biometrics, Face recognition, Image generation, Spoofing attacks
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 22 Sep 2020 13:25
Letzte Änderung: 22 Sep 2020 13:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen