TU Darmstadt / ULB / TUbiblio

Multiclass Yeast Segmentation in Microstructured Environments with Deep Learning

Prangemeier, Tim ; Wildner, C. ; Francani, A. O. ; Reich, C. ; Koeppl, H. (2020)
Multiclass Yeast Segmentation in Microstructured Environments with Deep Learning.
International Conference on Computational Intelligence in Bioinformatics and Computational Biology. virtual Conference (27.10.2020-29.10.2020)
doi: 10.1109/CIBCB48159.2020.9277693
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Cell segmentation is a major bottleneck in extracting quantitative single-cell information from microscopy data. The challenge is exasperated in the setting of microstructured environments. While deep learning approaches have proven useful for general cell segmentation tasks, existing segmentation tools for the yeast-microstructure setting rely on traditional machine learning approaches. Here we present convolutional neural networks trained for multiclass segmenting of individual yeast cells and discerning these from cell-similar microstructures. We give an overview of the datasets recorded for training, validating and testing the networks, as well as a typical usecase. We showcase the method’s contribution to segmenting yeast in microstructured environments with a typical synthetic biology application in mind. The models achieve robust segmentation results, outperforming the previous state-of-the-art in both accuracy and speed. The combination of fast and accurate segmentation is not only beneficial for a posteriori data processing, it also makes online monitoring of thousands of trapped cells or closed-loop optimal experimental design feasible from an image processing perspective.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Prangemeier, Tim ; Wildner, C. ; Francani, A. O. ; Reich, C. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Multiclass Yeast Segmentation in Microstructured Environments with Deep Learning
Sprache: Englisch
Publikationsjahr: 7 Dezember 2020
Verlag: IEEE
Buchtitel: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2020)
Veranstaltungstitel: International Conference on Computational Intelligence in Bioinformatics and Computational Biology
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 27.10.2020-29.10.2020
DOI: 10.1109/CIBCB48159.2020.9277693
Zugehörige Links:
Kurzbeschreibung (Abstract):

Cell segmentation is a major bottleneck in extracting quantitative single-cell information from microscopy data. The challenge is exasperated in the setting of microstructured environments. While deep learning approaches have proven useful for general cell segmentation tasks, existing segmentation tools for the yeast-microstructure setting rely on traditional machine learning approaches. Here we present convolutional neural networks trained for multiclass segmenting of individual yeast cells and discerning these from cell-similar microstructures. We give an overview of the datasets recorded for training, validating and testing the networks, as well as a typical usecase. We showcase the method’s contribution to segmenting yeast in microstructured environments with a typical synthetic biology application in mind. The models achieve robust segmentation results, outperforming the previous state-of-the-art in both accuracy and speed. The combination of fast and accurate segmentation is not only beneficial for a posteriori data processing, it also makes online monitoring of thousands of trapped cells or closed-loop optimal experimental design feasible from an image processing perspective.

Freie Schlagworte: semantic segmentation, synthetic biology, biomedical image analysis, microfluidics, single-cell analysis, time-lapse fluorescent microscopy, deep learning
Zusätzliche Informationen:

Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 22 Sep 2020 09:51
Letzte Änderung: 03 Jul 2024 02:46
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen