TU Darmstadt / ULB / TUbiblio

Improved Bounds for Open Online Dial-a-Ride on the Line

Birx, Alexander ; Disser, Yann ; Schewior, Kevin
Hrsg.: Achlioptas, Dimitris ; Végh‬, ‪László (2019)
Improved Bounds for Open Online Dial-a-Ride on the Line.
22nd International Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX/RANDOM 2019). Cambridge, USA (20.09.2019-22.09.2019)
doi: 10.4230/LIPIcs.APPROX-RANDOM.2019.21
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We consider the open, non-preemptive online Dial-a-Ride problem on the real line, where transportation requests appear over time and need to be served by a single server. We give a lower bound of 2.0585 on the competitive ratio, which is the first bound that strictly separates online Dial-a-Ride on the line from online TSP on the line in terms of competitive analysis, and is the best currently known lower bound even for general metric spaces. On the other hand, we present an algorithm that improves the best known upper bound from 2.9377 to 2.6662. The analysis of our algorithm is tight.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Herausgeber: Achlioptas, Dimitris ; Végh‬, ‪László
Autor(en): Birx, Alexander ; Disser, Yann ; Schewior, Kevin
Art des Eintrags: Bibliographie
Titel: Improved Bounds for Open Online Dial-a-Ride on the Line
Sprache: Englisch
Publikationsjahr: 17 September 2019
Verlag: Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Buchtitel: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
Reihe: Leibniz International Proceedings in Informatics
Band einer Reihe: 145
Veranstaltungstitel: 22nd International Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX/RANDOM 2019)
Veranstaltungsort: Cambridge, USA
Veranstaltungsdatum: 20.09.2019-22.09.2019
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.21
URL / URN: https://drops.dagstuhl.de/opus/portals/lipics/index.php?semn...
Kurzbeschreibung (Abstract):

We consider the open, non-preemptive online Dial-a-Ride problem on the real line, where transportation requests appear over time and need to be served by a single server. We give a lower bound of 2.0585 on the competitive ratio, which is the first bound that strictly separates online Dial-a-Ride on the line from online TSP on the line in terms of competitive analysis, and is the best currently known lower bound even for general metric spaces. On the other hand, we present an algorithm that improves the best known upper bound from 2.9377 to 2.6662. The analysis of our algorithm is tight.

Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
04 Fachbereich Mathematik > Optimierung > Discrete Optimization
Hinterlegungsdatum: 25 Aug 2020 07:38
Letzte Änderung: 18 Aug 2022 09:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen