TU Darmstadt / ULB / TUbiblio

Dimensionless Process Development for Lattice Structure Design in Laser Powder Bed Fusion

Großmann, A. ; Mölleney, Jan ; Frölich, Tilmann ; Merschroth, Holger ; Felger, Julian ; Weigold, Matthias ; Sielaff, Axel ; Mittelstedt, Christian (2020)
Dimensionless Process Development for Lattice Structure Design in Laser Powder Bed Fusion.
In: Materials & Design, 194
doi: 10.1016/j.matdes.2020.108952
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Laser powder bed fusion enables the fabrication of complex components such as thin-walled cellular structures including lattice or honeycomb structures. Numerous manufacturing parameters are involved in the resulting properties of the fabricated component and a material and machine-dependent process window development is necessary to determine a suitable process map. For cellular structures the thickness, which correlates with the process parameters, directly influences the mechanical properties of the component. Thus, dimensionless scaling laws describing the correlation between strut thickness, process parameters, and material properties enable predictive lattice structure design for laser powder bed fusion. This contribution develops material independent dimensionless allometric scaling laws for both single track and contour exposure to enable process-driven design of lattice structures in laser powder bed fusion. The theory derived with dimensional analysis is validated for the powder alloys stainless steel alloy 1.4404, nickel alloy 2.4856, aluminum alloy AlSi10Mg and Scalmalloy AlMgSc. The results can be used for the process-driven design of lattice structures and dense material obtaining high precision in the micrometer range or economic production with high melt pool widths

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Großmann, A. ; Mölleney, Jan ; Frölich, Tilmann ; Merschroth, Holger ; Felger, Julian ; Weigold, Matthias ; Sielaff, Axel ; Mittelstedt, Christian
Art des Eintrags: Bibliographie
Titel: Dimensionless Process Development for Lattice Structure Design in Laser Powder Bed Fusion
Sprache: Englisch
Publikationsjahr: September 2020
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials & Design
Jahrgang/Volume einer Zeitschrift: 194
DOI: 10.1016/j.matdes.2020.108952
Kurzbeschreibung (Abstract):

Laser powder bed fusion enables the fabrication of complex components such as thin-walled cellular structures including lattice or honeycomb structures. Numerous manufacturing parameters are involved in the resulting properties of the fabricated component and a material and machine-dependent process window development is necessary to determine a suitable process map. For cellular structures the thickness, which correlates with the process parameters, directly influences the mechanical properties of the component. Thus, dimensionless scaling laws describing the correlation between strut thickness, process parameters, and material properties enable predictive lattice structure design for laser powder bed fusion. This contribution develops material independent dimensionless allometric scaling laws for both single track and contour exposure to enable process-driven design of lattice structures in laser powder bed fusion. The theory derived with dimensional analysis is validated for the powder alloys stainless steel alloy 1.4404, nickel alloy 2.4856, aluminum alloy AlSi10Mg and Scalmalloy AlMgSc. The results can be used for the process-driven design of lattice structures and dense material obtaining high precision in the micrometer range or economic production with high melt pool widths

Freie Schlagworte: Design, Laser powder bed fusion, Lattice structures, Scaling laws, Thin-walled structures
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Konstruktiven Leichtbau und Bauweisen-KLuB (2023 umbenannt in Leichtbau und Strukturmechanik (LSM))
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Additive Fertigung und Dentale Technologie (2021 aufgegangen in TEC Fertigungstechnologie)
16 Fachbereich Maschinenbau > Fachgebiet für Technische Thermodynamik (TTD)
Hinterlegungsdatum: 29 Jul 2020 05:14
Letzte Änderung: 30 Mär 2021 09:30
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen