TU Darmstadt / ULB / TUbiblio

Can GAN Generated Morphs Threaten Face Recognition Systems Equally as Landmark Based Morphs? - Vulnerability and Detection

Venkatesh, Sushma ; Zhang, Haoyu ; Ramachandra, Raghavendra ; Raja, Kiran ; Damer, Naser ; Busch, Christoph (2020)
Can GAN Generated Morphs Threaten Face Recognition Systems Equally as Landmark Based Morphs? - Vulnerability and Detection.
Porto, Portugal (29.04.2020-30.04.2020)
doi: 10.1109/IWBF49977.2020.9107970
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The primary objective of face morphing is to com-bine face images of different data subjects (e.g. an malicious actor and an accomplice) to generate a face image that can be equally verified for both contributing data subjects. In this paper, we propose a new framework for generating face morphs using a newer Generative Adversarial Network (GAN) - StyleGAN. In contrast to earlier works, we generate realistic morphs of both high-quality and high resolution of 1024 × 1024 pixels. With the newly created morphing dataset of 2500 morphed face images, we pose a critical question in this work. (i) Can GAN generated morphs threaten Face Recognition Systems (FRS) equally as Landmark based morphs? Seeking an answer, we benchmark the vulnerability of a Commercial-Off-The-Shelf FRS (COTS) and a deep learning-based FRS (ArcFace). This work also benchmarks the detection approaches for both GAN generated morphs against the landmark based morphs using established Morphing Attack Detection (MAD) schemes.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Venkatesh, Sushma ; Zhang, Haoyu ; Ramachandra, Raghavendra ; Raja, Kiran ; Damer, Naser ; Busch, Christoph
Art des Eintrags: Bibliographie
Titel: Can GAN Generated Morphs Threaten Face Recognition Systems Equally as Landmark Based Morphs? - Vulnerability and Detection
Sprache: Englisch
Publikationsjahr: 2020
Ort: Los Alamitos, Calif.
Buchtitel: 2020 8th International Workshop on Biometrics and Forensics (IWBF)
Veranstaltungsort: Porto, Portugal
Veranstaltungsdatum: 29.04.2020-30.04.2020
DOI: 10.1109/IWBF49977.2020.9107970
URL / URN: https://doi.org/10.1109/IWBF49977.2020.9107970
Kurzbeschreibung (Abstract):

The primary objective of face morphing is to com-bine face images of different data subjects (e.g. an malicious actor and an accomplice) to generate a face image that can be equally verified for both contributing data subjects. In this paper, we propose a new framework for generating face morphs using a newer Generative Adversarial Network (GAN) - StyleGAN. In contrast to earlier works, we generate realistic morphs of both high-quality and high resolution of 1024 × 1024 pixels. With the newly created morphing dataset of 2500 morphed face images, we pose a critical question in this work. (i) Can GAN generated morphs threaten Face Recognition Systems (FRS) equally as Landmark based morphs? Seeking an answer, we benchmark the vulnerability of a Commercial-Off-The-Shelf FRS (COTS) and a deep learning-based FRS (ArcFace). This work also benchmarks the detection approaches for both GAN generated morphs against the landmark based morphs using established Morphing Attack Detection (MAD) schemes.

Freie Schlagworte: Biometrics, Face recognition, Spoofing attacks
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 08 Jun 2020 10:20
Letzte Änderung: 08 Jun 2020 10:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen