TU Darmstadt / ULB / TUbiblio

Novel 0D-nanocarbon-silica ceramic composites: sol–gel synthesis and high-temperature evolution

Ott, Alexander ; Rogg, Simone ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Hess, Christian ; Mera, Gabriela (2020)
Novel 0D-nanocarbon-silica ceramic composites: sol–gel synthesis and high-temperature evolution.
In: Dalton Transactions, 49 (21)
doi: 10.1039/D0DT01016B
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Herein we report the synthesis of novel 0D-nanocarbon-based silicon-containing ceramic composites by a facile salt-free synthesis method followed by polymer-to-ceramic transformation. 0D-nanocarbon–silica composites were synthesized via a one-pot sol–gel process using tetramethyl orthosilicate (TMOS) and functionalized nanodiamonds and converted subsequently via pyrolysis under an argon atmosphere into nanodiamond/silica nanocomposites. The thermal conversion of the nanodiamond phase to a multilayer fullerene phase was carefully investigated by integral and local characterization methods such as vibrational spectroscopy, X-ray diffraction, BET, SEM and HRTEM. The incorporation of nanodiamonds in a silica matrix enhances the crystallization temperature of the silica phase, as α-cristobalite, to 1500 °C, while their full graphitization is shifted to T > 1700 °C under an argon atmosphere. The thermal decomposition of the nanodiamond/silica composites leads to the formation of materials with a high specific surface area (up to 562 m2 g−1) and a mesoporous structure. No carbothermal reaction of composing phases was identified. The results obtained in the present study allow for designing advanced and highly-defined mesoporous 0D-nanocarbon-containing composites with tailored structural features and multifunctional property profiles.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Ott, Alexander ; Rogg, Simone ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Hess, Christian ; Mera, Gabriela
Art des Eintrags: Bibliographie
Titel: Novel 0D-nanocarbon-silica ceramic composites: sol–gel synthesis and high-temperature evolution
Sprache: Englisch
Publikationsjahr: 1 Mai 2020
Verlag: Royal Society of Chemistry
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Dalton Transactions
Jahrgang/Volume einer Zeitschrift: 49
(Heft-)Nummer: 21
DOI: 10.1039/D0DT01016B
URL / URN: https://pubs.rsc.org/en/content/articlelanding/2020/DT/D0DT0...
Kurzbeschreibung (Abstract):

Herein we report the synthesis of novel 0D-nanocarbon-based silicon-containing ceramic composites by a facile salt-free synthesis method followed by polymer-to-ceramic transformation. 0D-nanocarbon–silica composites were synthesized via a one-pot sol–gel process using tetramethyl orthosilicate (TMOS) and functionalized nanodiamonds and converted subsequently via pyrolysis under an argon atmosphere into nanodiamond/silica nanocomposites. The thermal conversion of the nanodiamond phase to a multilayer fullerene phase was carefully investigated by integral and local characterization methods such as vibrational spectroscopy, X-ray diffraction, BET, SEM and HRTEM. The incorporation of nanodiamonds in a silica matrix enhances the crystallization temperature of the silica phase, as α-cristobalite, to 1500 °C, while their full graphitization is shifted to T > 1700 °C under an argon atmosphere. The thermal decomposition of the nanodiamond/silica composites leads to the formation of materials with a high specific surface area (up to 562 m2 g−1) and a mesoporous structure. No carbothermal reaction of composing phases was identified. The results obtained in the present study allow for designing advanced and highly-defined mesoporous 0D-nanocarbon-containing composites with tailored structural features and multifunctional property profiles.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie
Hinterlegungsdatum: 04 Jun 2020 05:49
Letzte Änderung: 16 Aug 2021 12:06
PPN:
Projekte: German Research Foundation (DFG), Grant Number IO 83/2-1
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen