TU Darmstadt / ULB / TUbiblio

Impact of Surface Charge Directionality on Membrane Potential in Multi-ionic Systems

Ramirez, Patricio ; Cervera, Javier ; Ali, Mubarak ; Nasir, Saima ; Ensinger, Wolfgang ; Mafe, Salvador (2020)
Impact of Surface Charge Directionality on Membrane Potential in Multi-ionic Systems.
In: The Journal of Physical Chemistry Letters, 11 (7)
doi: 10.1021/acs.jpclett.0c00554
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The membrane potential (Vmem), defined as the electric potential difference across a membrane flanked by two different salt solutions, is central to electrochemical energy harvesting and conversion. Also, Vmem and the ionic concentrations that establish it are important to biophysical chemistry because they regulate crucial cell processes. We study experimentally and theoretically the salt dependence of Vmem in single conical nanopores for the case of multi-ionic systems of different ionic charge numbers. The major advances of this work are (i) to measure Vmem using a series of ions (Na+, K+, Ca2+, Cl–, and SO42–) that are of interest to both energy conversion and cell biochemistry, (ii) to describe the physicochemical effects resulting from the nanostructure asymmetry, (iii) to develop a theoretical model for multi-ionic systems, and (iv) to quantify the contributions of the liquid junction potentials established in the salt bridges to the total cell membrane potential.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Ramirez, Patricio ; Cervera, Javier ; Ali, Mubarak ; Nasir, Saima ; Ensinger, Wolfgang ; Mafe, Salvador
Art des Eintrags: Bibliographie
Titel: Impact of Surface Charge Directionality on Membrane Potential in Multi-ionic Systems
Sprache: Englisch
Publikationsjahr: 12 März 2020
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Journal of Physical Chemistry Letters
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 7
DOI: 10.1021/acs.jpclett.0c00554
URL / URN: https://doi.org/10.1021/acs.jpclett.0c00554
Kurzbeschreibung (Abstract):

The membrane potential (Vmem), defined as the electric potential difference across a membrane flanked by two different salt solutions, is central to electrochemical energy harvesting and conversion. Also, Vmem and the ionic concentrations that establish it are important to biophysical chemistry because they regulate crucial cell processes. We study experimentally and theoretically the salt dependence of Vmem in single conical nanopores for the case of multi-ionic systems of different ionic charge numbers. The major advances of this work are (i) to measure Vmem using a series of ions (Na+, K+, Ca2+, Cl–, and SO42–) that are of interest to both energy conversion and cell biochemistry, (ii) to describe the physicochemical effects resulting from the nanostructure asymmetry, (iii) to develop a theoretical model for multi-ionic systems, and (iv) to quantify the contributions of the liquid junction potentials established in the salt bridges to the total cell membrane potential.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialanalytik
Hinterlegungsdatum: 04 Jun 2020 05:41
Letzte Änderung: 04 Jun 2020 05:41
PPN:
Projekte: M.A., S.N., and W.E. gratefully acknowledge the financial support from the Hessen State Ministry of Higher Education, Research and the Arts (Germany), LOEWE Project iNAPO., The heavy ion irradiation of polymer membranes are based on a UMAT experiment, which was performed at the X0-beamline of the UNILAC at the GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany) in the frame of FAIR Phase-0., P.R., J.C., and S.M. acknowledge the funding from the Ministerio de Economia y Competitividad and the European Regional Development Funds (FEDER), Project PGC2018-097359-B-I00.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen