TU Darmstadt / ULB / TUbiblio

SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization

Gao, Yang ; Zhao, Wei ; Eger, Steffen (2020)
SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization.
ACL'20: 58th Annual Meeting of the Association for Computational Linguistics. virtual Conference (05.07.2020-10.07.2020)
doi: 10.18653/v1/2020.acl-main.124
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We study unsupervised multi-document summarization evaluation metrics, which require neither human-written reference summaries nor human annotations (e.g. preferences, ratings, etc.). We propose SUPERT, which rates the quality of a summary by measuring its semantic similarity with a pseudo reference summary, i.e. selected salient sentences from the source documents, using contextualized embeddings and soft token alignment techniques. Compared to the state-of-the-art unsupervised evaluation metrics, SUPERT correlates better with human ratings by 18- 39%. Furthermore, we use SUPERT as rewards to guide a neural-based reinforcement learning summarizer, yielding favorable performance compared to the state-of-the-art unsupervised summarizers. All source code is available at https://github.com/yg211/acl20-ref-free-eval.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Gao, Yang ; Zhao, Wei ; Eger, Steffen
Art des Eintrags: Bibliographie
Titel: SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization
Sprache: Englisch
Publikationsjahr: 2020
Ort: Kerrville, TX 78028, USA
Verlag: Association for Computational Linguistics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Buchtitel: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Veranstaltungstitel: ACL'20: 58th Annual Meeting of the Association for Computational Linguistics
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 05.07.2020-10.07.2020
DOI: 10.18653/v1/2020.acl-main.124
Zugehörige Links:
Kurzbeschreibung (Abstract):

We study unsupervised multi-document summarization evaluation metrics, which require neither human-written reference summaries nor human annotations (e.g. preferences, ratings, etc.). We propose SUPERT, which rates the quality of a summary by measuring its semantic similarity with a pseudo reference summary, i.e. selected salient sentences from the source documents, using contextualized embeddings and soft token alignment techniques. Compared to the state-of-the-art unsupervised evaluation metrics, SUPERT correlates better with human ratings by 18- 39%. Furthermore, we use SUPERT as rewards to guide a neural-based reinforcement learning summarizer, yielding favorable performance compared to the state-of-the-art unsupervised summarizers. All source code is available at https://github.com/yg211/acl20-ref-free-eval.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Knowledge Engineering
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 02 Jun 2020 10:19
Letzte Änderung: 19 Dez 2024 09:24
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen