TU Darmstadt / ULB / TUbiblio

Critical Role of Monoclinic Polarization Rotation in High-Performance PerovskitePiezoelectric Materials

Liu, Hui ; Chen, Jun ; Fan, Longlong ; Ren, Yang ; Pan, Zhao ; Kodumudi Venkataraman, Lalitha ; Rödel, Jürgen ; Xing, Xianran (2017)
Critical Role of Monoclinic Polarization Rotation in High-Performance PerovskitePiezoelectric Materials.
In: Physical Review Letters, 119 (1)
doi: 10.1103/PhysRevLett.119.017601
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

High-performance piezoelectric materials constantly attract interest for both technological applicationsand fundamental research. The understanding of the origin of the high-performance piezoelectric propertyremains a challenge mainly due to the lack of direct experimental evidence. We performin situhigh-energyx-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism forthe perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidencereveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays acritical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystalstructure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendencyof electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa.Furthermore, the monoclinicMAstructure is the key feature to superior piezoelectric properties ascompared to other structures such as monoclinicMB, rhombohedral, and tetragonal. A high piezoelectricresponse originates from intrinsic lattice strain, but little from extrinsic domain switching. The presentresults will facilitate designing high-performance perovskite piezoelectric materials by enhancing theintrinsic lattice contribution with easy and continuous polarization rotation

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Liu, Hui ; Chen, Jun ; Fan, Longlong ; Ren, Yang ; Pan, Zhao ; Kodumudi Venkataraman, Lalitha ; Rödel, Jürgen ; Xing, Xianran
Art des Eintrags: Bibliographie
Titel: Critical Role of Monoclinic Polarization Rotation in High-Performance PerovskitePiezoelectric Materials
Sprache: Englisch
Publikationsjahr: 7 Juli 2017
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review Letters
Jahrgang/Volume einer Zeitschrift: 119
(Heft-)Nummer: 1
DOI: 10.1103/PhysRevLett.119.017601
Kurzbeschreibung (Abstract):

High-performance piezoelectric materials constantly attract interest for both technological applicationsand fundamental research. The understanding of the origin of the high-performance piezoelectric propertyremains a challenge mainly due to the lack of direct experimental evidence. We performin situhigh-energyx-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism forthe perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidencereveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays acritical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystalstructure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendencyof electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa.Furthermore, the monoclinicMAstructure is the key feature to superior piezoelectric properties ascompared to other structures such as monoclinicMB, rhombohedral, and tetragonal. A high piezoelectricresponse originates from intrinsic lattice strain, but little from extrinsic domain switching. The presentresults will facilitate designing high-performance perovskite piezoelectric materials by enhancing theintrinsic lattice contribution with easy and continuous polarization rotation

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 26 Mai 2020 05:31
Letzte Änderung: 26 Mai 2020 05:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen