TU Darmstadt / ULB / TUbiblio

Engineering of oxygen pathways for better oxygen permeability in Cr-substituted Ba2In2O5 membranes

Widenmeyer, Marc ; Wiegers, Katharina-Sophia ; Chen, Guoxing ; Yoon, Songhak ; Feldhoff, Armin ; Weidenkaff, Anke (2020)
Engineering of oxygen pathways for better oxygen permeability in Cr-substituted Ba2In2O5 membranes.
In: Journal of Membrane Science, 595
doi: 10.1016/j.memsci.2019.117558
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Ba2In2O5 is a mixed ionic–electronic conducting (MIEC) ceramic-based material offering a large number of oxygen vacancies to become an alternative material for oxygen separation membranes from gas mixtures or even a CO2 plasma. This material was selected as model system to deeper analyze the structure-property relations, while making use of a promising structure stability. In this study, partial substitution of In3+ by Cr3+ yielded single-phase Ba2In2–xCrxO5–δ (x = 0, 0.2, 0.25). This forced an altered arrangement of the oxygen vacancies and a structural change from orthorhombic (Ibm2) to tetragonal (I4cm). The highest oxygen permeability of P(O2) = 1.4 ± 0.1 mL min−1·cm−2·mm at 1223 K among all tested samples was obtained for x = 0.2. A precise adjustment of the degree of oxygen vacancy ordering and the unit cell volume in this material reduced the activation energy EA and enhanced the self-diffusion coefficient D0 of the oxygen ions boosting the oxygen permeability as demonstrated by the superior oxygen permeability at lower temperatures (~1000 K), still reaching an oxygen permeability of P(O2) = 0.72 ± 0.04 mL min−1·cm−2·mm at 773 K. This concept seems plausible for an adaption to other structurally related membrane materials.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Widenmeyer, Marc ; Wiegers, Katharina-Sophia ; Chen, Guoxing ; Yoon, Songhak ; Feldhoff, Armin ; Weidenkaff, Anke
Art des Eintrags: Bibliographie
Titel: Engineering of oxygen pathways for better oxygen permeability in Cr-substituted Ba2In2O5 membranes
Sprache: Englisch
Publikationsjahr: 1 Februar 2020
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Membrane Science
Jahrgang/Volume einer Zeitschrift: 595
DOI: 10.1016/j.memsci.2019.117558
URL / URN: https://doi.org/10.1016/j.memsci.2019.117558
Kurzbeschreibung (Abstract):

Ba2In2O5 is a mixed ionic–electronic conducting (MIEC) ceramic-based material offering a large number of oxygen vacancies to become an alternative material for oxygen separation membranes from gas mixtures or even a CO2 plasma. This material was selected as model system to deeper analyze the structure-property relations, while making use of a promising structure stability. In this study, partial substitution of In3+ by Cr3+ yielded single-phase Ba2In2–xCrxO5–δ (x = 0, 0.2, 0.25). This forced an altered arrangement of the oxygen vacancies and a structural change from orthorhombic (Ibm2) to tetragonal (I4cm). The highest oxygen permeability of P(O2) = 1.4 ± 0.1 mL min−1·cm−2·mm at 1223 K among all tested samples was obtained for x = 0.2. A precise adjustment of the degree of oxygen vacancy ordering and the unit cell volume in this material reduced the activation energy EA and enhanced the self-diffusion coefficient D0 of the oxygen ions boosting the oxygen permeability as demonstrated by the superior oxygen permeability at lower temperatures (~1000 K), still reaching an oxygen permeability of P(O2) = 0.72 ± 0.04 mL min−1·cm−2·mm at 773 K. This concept seems plausible for an adaption to other structurally related membrane materials.

Freie Schlagworte: Ba2In2O5, Brownmillerite, Cr-substitution, Oxygen separation, Membrane
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 20 Mai 2020 06:38
Letzte Änderung: 20 Mai 2020 06:38
PPN:
Projekte: The authors thank Dr. Mauro Coduri (ESRF, Grenoble) and Prof. Dr. Marco Scavini (University of Milan) for their help as well as the ESRF, Grenoble, France for the granted beam time and financial support of experiment CH-5342., We also thank Samir Hammoud (Max Planck Institute for Intelligent Systems, Stuttgart) for the hot gas extraction measurements, M.Sc. Cora Bubeck (Technische Universit_at Darmstadt) for collection of SEM images, and M.Sc. Zhijun Zhao (Leibniz University of, This work was supported by the Federal Ministry of Education and Research of Germany in the framework of the Kopernikus projects for the Energiewende within the project PiCK (project number: 03SFK2S3B) and the Vector Stiftung (project number: 2015-044).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen