TU Darmstadt / ULB / TUbiblio

Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2– - La0.5Sr0.5Fe0.9Cu0.1O3– membranes with high oxygen permeability

Chen, Guoxing and Tang, Binjie and Widenmeyer, Marc and Wang, Ling and Feldhoff, Armin and Weidenkaff, Anke (2020):
Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2– - La0.5Sr0.5Fe0.9Cu0.1O3– membranes with high oxygen permeability.
In: Journal of Membrane Science, 595. p. 117530, ISSN 03767388,
DOI: 10.1016/j.memsci.2019.117530,
[Online-Edition: https://doi.org/10.1016/j.memsci.2019.117530],
[Article]

Abstract

A series of novel dense, CO2-tolerant, oxygen permeable, dual-phase membranes made of Ce0.9Pr0.1O2–δ - La0.5Sr0.5Fe0.9Cu0.1O3–δ (CPO-LSFCO) with different CPO : LSFCO weight ratios (2:8, 4:6, 6:4 and 8:2) was prepared by an one-pot EDTA-citric acid method. Their chemical compatibility, oxygen permeability, CO2 tolerance and long-term stability regarding the phase structure and composition in different atmospheres were studied. A direct dependency of the oxygen permeation flux through the membranes on the CPO : LSFCO weight ratio was obtained. The highest permeation fluxes of 0.93 mL min−1 cm−2 and 0.71 mL min−1 cm−2 under an air/He and an air/CO2 gradient, respectively, through a 0.5 mm thick membrane at 1173 K were measured for a weight ratio of 4:6. Especially, the membranes showed excellent chemical resistance towards CO2 for more than 2050 h and CO2 plasma for more than 20 h. This work demonstrates that dual-phase CPO-LSFCO membranes are promising, chemically stable candidates as oxygen suppliers or oxygen distributors for industrial applications.

Item Type: Article
Erschienen: 2020
Creators: Chen, Guoxing and Tang, Binjie and Widenmeyer, Marc and Wang, Ling and Feldhoff, Armin and Weidenkaff, Anke
Title: Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2– - La0.5Sr0.5Fe0.9Cu0.1O3– membranes with high oxygen permeability
Language: English
Abstract:

A series of novel dense, CO2-tolerant, oxygen permeable, dual-phase membranes made of Ce0.9Pr0.1O2–δ - La0.5Sr0.5Fe0.9Cu0.1O3–δ (CPO-LSFCO) with different CPO : LSFCO weight ratios (2:8, 4:6, 6:4 and 8:2) was prepared by an one-pot EDTA-citric acid method. Their chemical compatibility, oxygen permeability, CO2 tolerance and long-term stability regarding the phase structure and composition in different atmospheres were studied. A direct dependency of the oxygen permeation flux through the membranes on the CPO : LSFCO weight ratio was obtained. The highest permeation fluxes of 0.93 mL min−1 cm−2 and 0.71 mL min−1 cm−2 under an air/He and an air/CO2 gradient, respectively, through a 0.5 mm thick membrane at 1173 K were measured for a weight ratio of 4:6. Especially, the membranes showed excellent chemical resistance towards CO2 for more than 2050 h and CO2 plasma for more than 20 h. This work demonstrates that dual-phase CPO-LSFCO membranes are promising, chemically stable candidates as oxygen suppliers or oxygen distributors for industrial applications.

Journal or Publication Title: Journal of Membrane Science
Journal volume: 595
Uncontrolled Keywords: Dual-phase membrane, Oxygen permeation, CO2 resistance, Long-term CO2 resistance, CO2 plasma resistance
Divisions: 11 Department of Materials and Earth Sciences
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences > Material Science > Materials and Resources
Date Deposited: 20 May 2020 07:08
DOI: 10.1016/j.memsci.2019.117530
Official URL: https://doi.org/10.1016/j.memsci.2019.117530
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details