TU Darmstadt / ULB / TUbiblio

High flux and CO2-resistance of La0.6Ca0.4Co1–Fe O3− oxygen-transporting membranes

Chen, Guoxing ; Liu, Wenmei ; Widenmeyer, Marc ; Ying, Pingjun ; Dou, Maofeng ; Xie, Wenjie ; Bubeck, Cora ; Wang, Ling ; Fyta, Maria ; Feldhoff, Armin ; Weidenkaff, Anke (2019)
High flux and CO2-resistance of La0.6Ca0.4Co1–Fe O3− oxygen-transporting membranes.
In: Journal of Membrane Science, 590
doi: 10.1016/j.memsci.2019.05.007
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Most of the currently used perovskite-based oxygen-transporting membranes have insufficient resistance towards CO2 and high material costs that potentially limit their commercial applications. In the present work, a highly CO2-tolerant oxygen permeation membrane based on La0.6Ca0.4Co1–xFexO3−δ (x = 0, 0.3, 0.5, 0.7, 1) was designed and prepared by a scalable reverse co-precipitation method. The oxygen permeation flux through the dense membranes was evaluated and found to be highly dependent on the Co/Fe ratio. La0.6Ca0.4Co0.3Fe0.7O3−δ possessed the highest permeation flux among the investigated samples, achieving 0.76 ml min−1 cm−2 under an Air/He gradient and 0.5 ml min−1 cm−2 under an Air/CO2 gradient at 1173 K for a 1 mm thick membrane. A combination study of first principles calculations and experimental measurements was conducted to advance the understanding of Co/Fe ratio effects on the oxygen migration behavior in La0.6Ca0.4Co1–xFexO3−δ. The observed oxygen permeability is three times higher than that reported in literature under similar conditions. The presented results demonstrate that this highly CO2-tolerant membrane is a promising candidate for high temperature oxygen separation applications.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Chen, Guoxing ; Liu, Wenmei ; Widenmeyer, Marc ; Ying, Pingjun ; Dou, Maofeng ; Xie, Wenjie ; Bubeck, Cora ; Wang, Ling ; Fyta, Maria ; Feldhoff, Armin ; Weidenkaff, Anke
Art des Eintrags: Bibliographie
Titel: High flux and CO2-resistance of La0.6Ca0.4Co1–Fe O3− oxygen-transporting membranes
Sprache: Englisch
Publikationsjahr: 15 November 2019
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Membrane Science
Jahrgang/Volume einer Zeitschrift: 590
DOI: 10.1016/j.memsci.2019.05.007
URL / URN: https://doi.org/10.1016/j.memsci.2019.05.007
Kurzbeschreibung (Abstract):

Most of the currently used perovskite-based oxygen-transporting membranes have insufficient resistance towards CO2 and high material costs that potentially limit their commercial applications. In the present work, a highly CO2-tolerant oxygen permeation membrane based on La0.6Ca0.4Co1–xFexO3−δ (x = 0, 0.3, 0.5, 0.7, 1) was designed and prepared by a scalable reverse co-precipitation method. The oxygen permeation flux through the dense membranes was evaluated and found to be highly dependent on the Co/Fe ratio. La0.6Ca0.4Co0.3Fe0.7O3−δ possessed the highest permeation flux among the investigated samples, achieving 0.76 ml min−1 cm−2 under an Air/He gradient and 0.5 ml min−1 cm−2 under an Air/CO2 gradient at 1173 K for a 1 mm thick membrane. A combination study of first principles calculations and experimental measurements was conducted to advance the understanding of Co/Fe ratio effects on the oxygen migration behavior in La0.6Ca0.4Co1–xFexO3−δ. The observed oxygen permeability is three times higher than that reported in literature under similar conditions. The presented results demonstrate that this highly CO2-tolerant membrane is a promising candidate for high temperature oxygen separation applications.

Freie Schlagworte: Perovskite, Oxygen permeation membrane, CO2 resistance, DFT, Oxygen vacancy migration energy, Oxygen vacancy formation energy
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 20 Mai 2020 06:47
Letzte Änderung: 20 Mai 2020 06:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen