Le Goff, T. ; Liebchen, B. ; Marenduzzo, D. (2017)
Actomyosin contraction induces droplet motility.
doi: 10.48550/arXiv.1712.03138
Report, Bibliographie
Kurzbeschreibung (Abstract)
While cell crawling on a solid surface is relatively well understood, and relies on substrate adhesion, some cells can also swim in the bulk, through mechanisms that are still largely unclear. Here, we propose a minimal model for in-bulk self-motility of a droplet containing an isotropic and compressible contractile gel, representing a cell extract containing a disordered actomyosin network. In our model, contraction mediates a feedback loop between myosin-induced flow and advection-induced myosin accumulation, which leads to clustering and a locally enhanced flow. Interactions of the emerging clusters with the droplet membrane break flow symmetry and set the whole droplet into motion. Depending mainly on the balance between contraction and diffusion, this motion can be either straight or circular. Our simulations and analytical results provide a framework allowing to study in-bulk myosin-driven cell motility in living cells and to design synthetic motile active matter droplets.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2017 |
Autor(en): | Le Goff, T. ; Liebchen, B. ; Marenduzzo, D. |
Art des Eintrags: | Bibliographie |
Titel: | Actomyosin contraction induces droplet motility |
Sprache: | Englisch |
Publikationsjahr: | 8 Dezember 2017 |
Verlag: | arXiv |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Cornell University |
Reihe: | Soft Condensed Matter |
Kollation: | 5 Seiten |
DOI: | 10.48550/arXiv.1712.03138 |
URL / URN: | https://arxiv.org/abs/1712.03138 |
Kurzbeschreibung (Abstract): | While cell crawling on a solid surface is relatively well understood, and relies on substrate adhesion, some cells can also swim in the bulk, through mechanisms that are still largely unclear. Here, we propose a minimal model for in-bulk self-motility of a droplet containing an isotropic and compressible contractile gel, representing a cell extract containing a disordered actomyosin network. In our model, contraction mediates a feedback loop between myosin-induced flow and advection-induced myosin accumulation, which leads to clustering and a locally enhanced flow. Interactions of the emerging clusters with the droplet membrane break flow symmetry and set the whole droplet into motion. Depending mainly on the balance between contraction and diffusion, this motion can be either straight or circular. Our simulations and analytical results provide a framework allowing to study in-bulk myosin-driven cell motility in living cells and to design synthetic motile active matter droplets. |
Zusätzliche Informationen: | 1.Version |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) 05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) > Theorie weicher Materie |
Hinterlegungsdatum: | 25 Mai 2020 08:18 |
Letzte Änderung: | 19 Dez 2024 09:15 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |