TU Darmstadt / ULB / TUbiblio

Visual-Interactive Similarity Search for Complex Objects by Example of Soccer Player Analysis

Fellner, Dieter ; Kohlhammer, Jörn ; Zeppelzauer, Matthias ; Sessler, David ; Ritter, Christian ; Bernard, Jürgen (2017)
Visual-Interactive Similarity Search for Complex Objects by Example of Soccer Player Analysis.
12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Porto, Portugal (27.02.2017-01.03.2017)
doi: 10.5220/0006116400750087
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The definition of similarity is a key prerequisite when analyzing complex data types in data mining, information retrieval, or machine learning. However, the meaningful definition is often hampered by the complexity of data objects and particularly by different notions of subjective similarity latent in targeted user groups. Taking the example of soccer players, we present a visual-interactive system that learns users' mental models of similarity. In a visual-interactive interface, users are able to label pairs of soccer players with respect to their subjective notion of similarity. Our proposed similarity model automatically learns the respective concept of similarity using an active learning strategy. A visual-interactive retrieval technique is provided to validate the model and to execute downstream retrieval tasks for soccer player analysis. The applicability of the approach is demonstrated in different evaluation strategies, including usage scenarions and cross-validation tests.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Fellner, Dieter ; Kohlhammer, Jörn ; Zeppelzauer, Matthias ; Sessler, David ; Ritter, Christian ; Bernard, Jürgen
Art des Eintrags: Bibliographie
Titel: Visual-Interactive Similarity Search for Complex Objects by Example of Soccer Player Analysis
Sprache: Englisch
Publikationsjahr: 2017
Veranstaltungstitel: 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
Veranstaltungsort: Porto, Portugal
Veranstaltungsdatum: 27.02.2017-01.03.2017
DOI: 10.5220/0006116400750087
URL / URN: https://doi.org/10.5220/0006116400750087
Kurzbeschreibung (Abstract):

The definition of similarity is a key prerequisite when analyzing complex data types in data mining, information retrieval, or machine learning. However, the meaningful definition is often hampered by the complexity of data objects and particularly by different notions of subjective similarity latent in targeted user groups. Taking the example of soccer players, we present a visual-interactive system that learns users' mental models of similarity. In a visual-interactive interface, users are able to label pairs of soccer players with respect to their subjective notion of similarity. Our proposed similarity model automatically learns the respective concept of similarity using an active learning strategy. A visual-interactive retrieval technique is provided to validate the model and to execute downstream retrieval tasks for soccer player analysis. The applicability of the approach is demonstrated in different evaluation strategies, including usage scenarions and cross-validation tests.

Freie Schlagworte: Information visualization, Visual analytics, Similarity search, Feature selection, Complex data, Information retrieval, Active learning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 07 Mai 2020 09:40
Letzte Änderung: 04 Feb 2022 12:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen