TU Darmstadt / ULB / TUbiblio

Visual-Interactive Semi-Supervised Labeling of Human Motion Capture Data

Bernard, Jürgen ; Dobermann, Eduard ; Vögele, Anna ; Krüger, Björn ; Kohlhammer, Jörn ; Fellner, Dieter (2017)
Visual-Interactive Semi-Supervised Labeling of Human Motion Capture Data.
IS&T International Symposium on Electronic Imaging.
doi: 10.2352/ISSN.2470-1173.2017.1.VDA-387
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The characterization and abstraction of large multivariate time series data often poses challenges with respect to effectiveness or efficiency. Using the example of human motion capture data challenges exist in creating compact solutions that still reflect semantics and kinematics in a meaningful way. We present a visual-interactive approach for the semi-supervised labeling of human motion capture data. Users are enabled to assign labels to the data which can subsequently be used to represent the multivariate time series as sequences of motion classes. The approach combines multiple views supporting the user in the visual-interactive labeling process. Visual guidance concepts further ease the labeling process by propagating the results of supportive algorithmic models. The abstraction of motion capture data to sequences of event intervals allows overview and detail-on-demand visualizations even for large and heterogeneous data collections. The guided selection of candidate data for the extension and improvement of the labeling closes the feedback loop of the semi-supervised workflow. We demonstrate the effectiveness and the efficiency of the approach in two usage scenarios, taking visual-interactive learning and human motion synthesis as examples.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Bernard, Jürgen ; Dobermann, Eduard ; Vögele, Anna ; Krüger, Björn ; Kohlhammer, Jörn ; Fellner, Dieter
Art des Eintrags: Bibliographie
Titel: Visual-Interactive Semi-Supervised Labeling of Human Motion Capture Data
Sprache: Englisch
Publikationsjahr: 2017
Ort: Springfield
Verlag: Society for Imaging Science and Technology
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Electronic Imaging
(Heft-)Nummer: 1
Buchtitel: Electronic Imaging, Visualization and Data Analysis
Veranstaltungstitel: IS&T International Symposium on Electronic Imaging
DOI: 10.2352/ISSN.2470-1173.2017.1.VDA-387
URL / URN: https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-387
Kurzbeschreibung (Abstract):

The characterization and abstraction of large multivariate time series data often poses challenges with respect to effectiveness or efficiency. Using the example of human motion capture data challenges exist in creating compact solutions that still reflect semantics and kinematics in a meaningful way. We present a visual-interactive approach for the semi-supervised labeling of human motion capture data. Users are enabled to assign labels to the data which can subsequently be used to represent the multivariate time series as sequences of motion classes. The approach combines multiple views supporting the user in the visual-interactive labeling process. Visual guidance concepts further ease the labeling process by propagating the results of supportive algorithmic models. The abstraction of motion capture data to sequences of event intervals allows overview and detail-on-demand visualizations even for large and heterogeneous data collections. The guided selection of candidate data for the extension and improvement of the labeling closes the feedback loop of the semi-supervised workflow. We demonstrate the effectiveness and the efficiency of the approach in two usage scenarios, taking visual-interactive learning and human motion synthesis as examples.

Freie Schlagworte: Visual analytics, Information visualization, Motion capturing, Motion segmentation, Human motion analysis, Segmentation, Interactive segmentation, Labeling, Machine learning, Visual data mining, Data mining
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 05 Mai 2020 16:05
Letzte Änderung: 04 Feb 2022 12:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen