TU Darmstadt / ULB / TUbiblio

Mutual Information-Based Tracking for Multiple Cameras and Multiple Planes

Wen, Zhuoman ; Kuijper, Arjan ; Fraissinet-Tachet, Matthieu ; Wang, Yanjie ; Luo, Jun (2017)
Mutual Information-Based Tracking for Multiple Cameras and Multiple Planes.
In: Arabian Journal for Science and Engineering, 42 (8)
doi: 10.1007/s13369-017-2541-z
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Based onmutual information (MI), this paper proposes a systematic analysis of tracking a multi-plane object with multiple cameras. Firstly, a geometric model consisting of a piecewise planar object and multiple cameras is setup. Given an initial pose guess, the method seeks a pose update that maximizes the global MI of all the pairs of reference image and camera image. An object pose-dependent warp is proposed to ensure computation precision. Six variations of the proposed method are designed and tested. Mode 1, i.e., computing the 2nd-order Hessian of MI at each step as the object pose changes, leads to the highest convergence rates; Mode 2, i.e., computing the 1st-order Hessian of MI once at the beginning, occupies the least time (0.5-1.0 s). For objects with simple-textured planes, applying Gaussian blur first and then useMode 1 shall generate the highest convergence rate.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Wen, Zhuoman ; Kuijper, Arjan ; Fraissinet-Tachet, Matthieu ; Wang, Yanjie ; Luo, Jun
Art des Eintrags: Bibliographie
Titel: Mutual Information-Based Tracking for Multiple Cameras and Multiple Planes
Sprache: Englisch
Publikationsjahr: 2017
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Arabian Journal for Science and Engineering
Jahrgang/Volume einer Zeitschrift: 42
(Heft-)Nummer: 8
DOI: 10.1007/s13369-017-2541-z
URL / URN: https://link.springer.com/journal/13369/42/8/page/2
Kurzbeschreibung (Abstract):

Based onmutual information (MI), this paper proposes a systematic analysis of tracking a multi-plane object with multiple cameras. Firstly, a geometric model consisting of a piecewise planar object and multiple cameras is setup. Given an initial pose guess, the method seeks a pose update that maximizes the global MI of all the pairs of reference image and camera image. An object pose-dependent warp is proposed to ensure computation precision. Six variations of the proposed method are designed and tested. Mode 1, i.e., computing the 2nd-order Hessian of MI at each step as the object pose changes, leads to the highest convergence rates; Mode 2, i.e., computing the 1st-order Hessian of MI once at the beginning, occupies the least time (0.5-1.0 s). For objects with simple-textured planes, applying Gaussian blur first and then useMode 1 shall generate the highest convergence rate.

Freie Schlagworte: Computer vision, Camera tracking, Image registration, Mutual information (MI), Nonlinear optimization
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 04 Mai 2020 12:41
Letzte Änderung: 04 Mai 2020 12:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen