TU Darmstadt / ULB / TUbiblio

Efficient, Accurate, and Rotation-Invariant Iris Code

Damer, Naser ; Terhörst, Philipp ; Braun, Andreas ; Kuijper, Arjan (2017)
Efficient, Accurate, and Rotation-Invariant Iris Code.
In: IEEE Signal Processing Letters, 24 (8)
doi: 10.1109/LSP.2017.2719282
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The large scale of the recently demanded biometric systems has put a pressure on creating a more efficient, accurate, and private biometric solutions. Iris biometrics is one of the most distinctive and widely used biometric characteristics. High-performing iris representations suffer from the curse of rotation inconsistency. This is usually solved by assuming a range of rotational errors and performing a number of comparisons over this range, which results in a high computational effort and limits indexing and template protection. This work presents a generic and parameter-free transformation of binary iris representation into a rotation-invariant space. The goal is to perform accurate and efficient comparison and enable further indexing and template protection deployment. The proposed approach was tested on a database of 10 000 subjects of the ISYN1 iris database generated by CASIA. Besides providing a compact and rotational-invariant representation, the proposed approach reduced the equal error rate by more than 55% and the computational time by a factor of up to 44 compared to the original representation.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Damer, Naser ; Terhörst, Philipp ; Braun, Andreas ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Efficient, Accurate, and Rotation-Invariant Iris Code
Sprache: Englisch
Publikationsjahr: 2017
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Signal Processing Letters
Jahrgang/Volume einer Zeitschrift: 24
(Heft-)Nummer: 8
DOI: 10.1109/LSP.2017.2719282
URL / URN: https://doi.org/10.1109/LSP.2017.2719282
Kurzbeschreibung (Abstract):

The large scale of the recently demanded biometric systems has put a pressure on creating a more efficient, accurate, and private biometric solutions. Iris biometrics is one of the most distinctive and widely used biometric characteristics. High-performing iris representations suffer from the curse of rotation inconsistency. This is usually solved by assuming a range of rotational errors and performing a number of comparisons over this range, which results in a high computational effort and limits indexing and template protection. This work presents a generic and parameter-free transformation of binary iris representation into a rotation-invariant space. The goal is to perform accurate and efficient comparison and enable further indexing and template protection deployment. The proposed approach was tested on a database of 10 000 subjects of the ISYN1 iris database generated by CASIA. Besides providing a compact and rotational-invariant representation, the proposed approach reduced the equal error rate by more than 55% and the computational time by a factor of up to 44 compared to the original representation.

Freie Schlagworte: Biometrics, Iris recognition, Feature selection, CRISP
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 04 Mai 2020 10:06
Letzte Änderung: 27 Feb 2023 11:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen