Damer, Naser ; Terhörst, Philipp ; Braun, Andreas ; Kuijper, Arjan (2017)
Efficient, Accurate, and Rotation-Invariant Iris Code.
In: IEEE Signal Processing Letters, 24 (8)
doi: 10.1109/LSP.2017.2719282
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The large scale of the recently demanded biometric systems has put a pressure on creating a more efficient, accurate, and private biometric solutions. Iris biometrics is one of the most distinctive and widely used biometric characteristics. High-performing iris representations suffer from the curse of rotation inconsistency. This is usually solved by assuming a range of rotational errors and performing a number of comparisons over this range, which results in a high computational effort and limits indexing and template protection. This work presents a generic and parameter-free transformation of binary iris representation into a rotation-invariant space. The goal is to perform accurate and efficient comparison and enable further indexing and template protection deployment. The proposed approach was tested on a database of 10 000 subjects of the ISYN1 iris database generated by CASIA. Besides providing a compact and rotational-invariant representation, the proposed approach reduced the equal error rate by more than 55% and the computational time by a factor of up to 44 compared to the original representation.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2017 |
Autor(en): | Damer, Naser ; Terhörst, Philipp ; Braun, Andreas ; Kuijper, Arjan |
Art des Eintrags: | Bibliographie |
Titel: | Efficient, Accurate, and Rotation-Invariant Iris Code |
Sprache: | Englisch |
Publikationsjahr: | 2017 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Signal Processing Letters |
Jahrgang/Volume einer Zeitschrift: | 24 |
(Heft-)Nummer: | 8 |
DOI: | 10.1109/LSP.2017.2719282 |
URL / URN: | https://doi.org/10.1109/LSP.2017.2719282 |
Kurzbeschreibung (Abstract): | The large scale of the recently demanded biometric systems has put a pressure on creating a more efficient, accurate, and private biometric solutions. Iris biometrics is one of the most distinctive and widely used biometric characteristics. High-performing iris representations suffer from the curse of rotation inconsistency. This is usually solved by assuming a range of rotational errors and performing a number of comparisons over this range, which results in a high computational effort and limits indexing and template protection. This work presents a generic and parameter-free transformation of binary iris representation into a rotation-invariant space. The goal is to perform accurate and efficient comparison and enable further indexing and template protection deployment. The proposed approach was tested on a database of 10 000 subjects of the ISYN1 iris database generated by CASIA. Besides providing a compact and rotational-invariant representation, the proposed approach reduced the equal error rate by more than 55% and the computational time by a factor of up to 44 compared to the original representation. |
Freie Schlagworte: | Biometrics, Iris recognition, Feature selection, CRISP |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing |
Hinterlegungsdatum: | 04 Mai 2020 10:06 |
Letzte Änderung: | 27 Feb 2023 11:25 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |