TU Darmstadt / ULB / TUbiblio

Chemical bonding effects on the brittle-to-ductile transition in metallic glasses

Moitzi, F. ; Şopu, D. ; Holec, D. ; Perera, D. ; Mousseau, N. ; Eckert, J. (2020)
Chemical bonding effects on the brittle-to-ductile transition in metallic glasses.
In: Acta Materialia, 188
doi: 10.1016/j.actamat.2020.02.002
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The influence of composition and temperature on the tensile deformation behavior of amorphous PdSi metal-metalloid alloys is investigated using large-scale molecular dynamics simulations. A correlation between highly directional Si-Si bonds and the deformation mechanisms is revealed by a Crystal Orbital Hamilton Population analysis based on electronic structure calculations from density functional theory. A transition from cracking perpendicular to the loading direction to shear banding can be achieved by increasing the temperature or decreasing the amount of silicon. Sampling of the saddle points on the potential energy surface reveals that a high fraction of rigid covalent Si-Si bonds increases the energy barriers for atomic rearrangements. These thermally-activated atomic relaxation events change the stress and strain state in the elastic regime and are precursor of local plasticity. High activation energies impede both the stress and the strain redistribution and cause cleavage-like cracking due to a delay of the onset of plasticity.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Moitzi, F. ; Şopu, D. ; Holec, D. ; Perera, D. ; Mousseau, N. ; Eckert, J.
Art des Eintrags: Bibliographie
Titel: Chemical bonding effects on the brittle-to-ductile transition in metallic glasses
Sprache: Englisch
Publikationsjahr: 15 April 2020
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 188
DOI: 10.1016/j.actamat.2020.02.002
URL / URN: https://doi.org/10.1016/j.actamat.2020.02.002
Kurzbeschreibung (Abstract):

The influence of composition and temperature on the tensile deformation behavior of amorphous PdSi metal-metalloid alloys is investigated using large-scale molecular dynamics simulations. A correlation between highly directional Si-Si bonds and the deformation mechanisms is revealed by a Crystal Orbital Hamilton Population analysis based on electronic structure calculations from density functional theory. A transition from cracking perpendicular to the loading direction to shear banding can be achieved by increasing the temperature or decreasing the amount of silicon. Sampling of the saddle points on the potential energy surface reveals that a high fraction of rigid covalent Si-Si bonds increases the energy barriers for atomic rearrangements. These thermally-activated atomic relaxation events change the stress and strain state in the elastic regime and are precursor of local plasticity. High activation energies impede both the stress and the strain redistribution and cause cleavage-like cracking due to a delay of the onset of plasticity.

Freie Schlagworte: Molecular dynamics, Density functional theory, Crystal orbital hamiltonian,population, Metallic glasses, PdSi, Shear bands, Cracks, Plasticity
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 24 Apr 2020 11:47
Letzte Änderung: 24 Apr 2020 11:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen