TU Darmstadt / ULB / TUbiblio

A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws

Giesselmann, Jan ; Meyer, Fabian ; Rohde, Christian (2020)
A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws.
In: BIT Numerical Mathematics, 60
doi: 10.1007/s10543-019-00794-z
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

This article considers one-dimensional random systems of hyperbolic conservation laws. Existence and uniqueness of random entropy admissible solutions for initial value problems of conservation laws, which involve random initial data and random flux functions, are established. Based on these results an a posteriori error analysis for a numerical approximation of the random entropy solution is presented. For the stochastic discretization, a non-intrusive approach, namely the Stochastic Collocation method is used. The spatio-temporal discretization relies on the Runge–Kutta Discontinuous Galerkin method. The a posteriori estimator is derived using smooth reconstructions of the discrete solution. Combined with the relative entropy stability framework this yields computable error bounds for the entire space-stochastic discretization error. The estimator admits a splitting into a stochastic and a deterministic (space-time) part, allowing for a novel residual-based space-stochastic adaptive mesh refinement algorithm. The scaling properties of the residuals are investigated and the efficiency of the proposed adaptive algorithms is illustrated in various numerical examples.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Giesselmann, Jan ; Meyer, Fabian ; Rohde, Christian
Art des Eintrags: Bibliographie
Titel: A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws
Sprache: Englisch
Publikationsjahr: 2020
Ort: Dordrecht [u.a.]
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: BIT Numerical Mathematics
Jahrgang/Volume einer Zeitschrift: 60
DOI: 10.1007/s10543-019-00794-z
URL / URN: https://link.springer.com/article/10.1007/s10543-019-00794-z
Zugehörige Links:
Kurzbeschreibung (Abstract):

This article considers one-dimensional random systems of hyperbolic conservation laws. Existence and uniqueness of random entropy admissible solutions for initial value problems of conservation laws, which involve random initial data and random flux functions, are established. Based on these results an a posteriori error analysis for a numerical approximation of the random entropy solution is presented. For the stochastic discretization, a non-intrusive approach, namely the Stochastic Collocation method is used. The spatio-temporal discretization relies on the Runge–Kutta Discontinuous Galerkin method. The a posteriori estimator is derived using smooth reconstructions of the discrete solution. Combined with the relative entropy stability framework this yields computable error bounds for the entire space-stochastic discretization error. The estimator admits a splitting into a stochastic and a deterministic (space-time) part, allowing for a novel residual-based space-stochastic adaptive mesh refinement algorithm. The scaling properties of the residuals are investigated and the efficiency of the proposed adaptive algorithms is illustrated in various numerical examples.

Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 29 Apr 2020 08:35
Letzte Änderung: 23 Mai 2024 08:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen