TU Darmstadt / ULB / TUbiblio

Grain boundary structure and mobility in high-entropy alloys: A comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe

Utt, Daniel ; Stukowski, Alexander ; Albe, Karsten (2020)
Grain boundary structure and mobility in high-entropy alloys: A comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe.
In: Acta Materialia, 186
doi: 10.1016/j.actamat.2019.12.031
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We employ atomistic computer simulations to study the structure and migration behavior of a Σ11 symmetrical tilt grain boundary in a 4-component model FCC high-entropy alloy (HEA) (CuNiCoFe). The results are compared to grain boundaries in elemental metals and a so-called ‘average-atom’ sample. We find that the repeating structural units characterizing the static grain boundary structure show the same repeating structural units for all samples, while the high temperature equilibrium grain boundary structure is most strongly influenced by presence of stacking faults. Under an applied synthetic driving force, this GB migrates by a mechanism assisted by partial dislocations in all materials. For this reason the grain boundary mobilities and stacking fault energies are directly related. Moreover, the HEA sample and the average-atom sample show almost identical mobilities suggesting that local chemical fluctuations play a minor role. Solute segregation to the GB in the HEA suppresses GB migration up to very high temperatures and might be the main cause for reduced grain growth in FCC HEAs.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Utt, Daniel ; Stukowski, Alexander ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Grain boundary structure and mobility in high-entropy alloys: A comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe
Sprache: Englisch
Publikationsjahr: März 2020
Verlag: Elsevier Ltd.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 186
DOI: 10.1016/j.actamat.2019.12.031
URL / URN: https://doi.org/10.1016/j.actamat.2019.12.031
Kurzbeschreibung (Abstract):

We employ atomistic computer simulations to study the structure and migration behavior of a Σ11 symmetrical tilt grain boundary in a 4-component model FCC high-entropy alloy (HEA) (CuNiCoFe). The results are compared to grain boundaries in elemental metals and a so-called ‘average-atom’ sample. We find that the repeating structural units characterizing the static grain boundary structure show the same repeating structural units for all samples, while the high temperature equilibrium grain boundary structure is most strongly influenced by presence of stacking faults. Under an applied synthetic driving force, this GB migrates by a mechanism assisted by partial dislocations in all materials. For this reason the grain boundary mobilities and stacking fault energies are directly related. Moreover, the HEA sample and the average-atom sample show almost identical mobilities suggesting that local chemical fluctuations play a minor role. Solute segregation to the GB in the HEA suppresses GB migration up to very high temperatures and might be the main cause for reduced grain growth in FCC HEAs.

Freie Schlagworte: High-entropy alloy, Grain growth,Grain boundary migration, Grain boundary segregation, Atomistic simulation
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 22 Apr 2020 05:28
Letzte Änderung: 22 Apr 2020 05:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen