TU Darmstadt / ULB / TUbiblio

Optimal Joint Routing and Scheduling in Millimeter-Wave Cellular Networks

Yuan, Dingwen and Lin, Hsuan-Yin and Widmer, Joerg and Hollick, Matthias (2018):
Optimal Joint Routing and Scheduling in Millimeter-Wave Cellular Networks.
In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, Honolulu, HI, USA, 16-19 April 2018, pp. 1205-1213, DOI: 10.1109/INFOCOM.2018.8485929,
[Online-Edition: https://ieeexplore.ieee.org/document/8485929/],
[Conference or Workshop Item]

Abstract

Millimeter-wave (mmWave) communication is a promising technology to cope with the expected exponential increase in data traffic in 5G networks. mmWave networks typically require a very dense deployment of mmWave base stations (mmBS). To reduce cost and increase flexibility, wireless backhauling is needed to connect the mmBSs. The characteristics of mmWave communication, and specifically its high directionality, imply new requirements for efficient routing and scheduling paradigms. We propose an efficient scheduling method, so-called schedule-oriented optimization, based on matching theory that optimizes QoS metrics jointly with routing. It is capable of solving any scheduling problem that can be formulated as a linear program whose variables are link times and QoS metrics. As an example of the schedule-oriented optimization, we show the optimal solution of the maximum throughput fair scheduling (MTFS). Practically, the optimal scheduling can be obtained even for networks with over 200 mmBSs. To further increase the runtime performance, we propose an efficient edge-coloring based approximation algorithm with provable performance bound. It achieves over 80% of the optimal max-min throughput and runs 5 to 100 times faster than the optimal algorithm in practice. Finally, we extend the optimal and approximation algorithms for the cases of multi-RF-chain mmBSs and integrated backhaul and access networks.

Item Type: Conference or Workshop Item
Erschienen: 2018
Creators: Yuan, Dingwen and Lin, Hsuan-Yin and Widmer, Joerg and Hollick, Matthias
Title: Optimal Joint Routing and Scheduling in Millimeter-Wave Cellular Networks
Language: English
Abstract:

Millimeter-wave (mmWave) communication is a promising technology to cope with the expected exponential increase in data traffic in 5G networks. mmWave networks typically require a very dense deployment of mmWave base stations (mmBS). To reduce cost and increase flexibility, wireless backhauling is needed to connect the mmBSs. The characteristics of mmWave communication, and specifically its high directionality, imply new requirements for efficient routing and scheduling paradigms. We propose an efficient scheduling method, so-called schedule-oriented optimization, based on matching theory that optimizes QoS metrics jointly with routing. It is capable of solving any scheduling problem that can be formulated as a linear program whose variables are link times and QoS metrics. As an example of the schedule-oriented optimization, we show the optimal solution of the maximum throughput fair scheduling (MTFS). Practically, the optimal scheduling can be obtained even for networks with over 200 mmBSs. To further increase the runtime performance, we propose an efficient edge-coloring based approximation algorithm with provable performance bound. It achieves over 80% of the optimal max-min throughput and runs 5 to 100 times faster than the optimal algorithm in practice. Finally, we extend the optimal and approximation algorithms for the cases of multi-RF-chain mmBSs and integrated backhaul and access networks.

Divisions: 20 Department of Computer Science
20 Department of Computer Science > Sichere Mobile Netze
DFG-Collaborative Research Centres (incl. Transregio)
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > A: Construction Methodology
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > A: Construction Methodology > Subproject A1: Modelling
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > A: Construction Methodology > Subproject A3: Migration
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms > Subproject C1: Network-centred perspective
Event Title: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications
Event Location: Honolulu, HI, USA
Event Dates: 16-19 April 2018
Date Deposited: 22 Apr 2020 08:10
DOI: 10.1109/INFOCOM.2018.8485929
Official URL: https://ieeexplore.ieee.org/document/8485929/
Related URLs:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details