TU Darmstadt / ULB / TUbiblio

NEAT-TCP: Generation of TCP Congestion Control Through Neuroevolution of Augmenting Topologies

Wallaschek, Kay Luis ; Klose, Robin ; Almon, Lars ; Hollick, Matthias (2020)
NEAT-TCP: Generation of TCP Congestion Control Through Neuroevolution of Augmenting Topologies.
IEEE International Conference on Communications (icc2020). virtual Conference (07.06.2020-11.06.2020)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We present NEAT-TCP, a novel technique to automatically generate congestion control algorithms in a data-driven fashion while optimizing towards a specified global system utility. NEAT-TCP employs an artificial neural network (ANN) in each node and generates a population of ANNs by means of an evolutionary algorithm called NEAT. The ANNs run independently from each other at the communication endpoints and take only features as inputs that are locally available at these nodes. We define the system utility as a combined maximization of overall throughput and throughput fairness between flows according to Jain's fairness index. The nodes are deployed in a grid topology in ns-3 simulations, which makes it particularly difficult to maximize the utility due to different interference levels for the data flows. In our experiments, NEAT-TCP achieves 69 % more fairness, 66 % less mean end-to-end delay and 71 % less packet loss in relation to TCP New Reno at the cost of 19 % less overall throughput, which meets our multi-criteria objective.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Wallaschek, Kay Luis ; Klose, Robin ; Almon, Lars ; Hollick, Matthias
Art des Eintrags: Bibliographie
Titel: NEAT-TCP: Generation of TCP Congestion Control Through Neuroevolution of Augmenting Topologies
Sprache: Englisch
Publikationsjahr: Juni 2020
Veranstaltungstitel: IEEE International Conference on Communications (icc2020)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 07.06.2020-11.06.2020
URL / URN: https://icc2020.ieee-icc.org
Zugehörige Links:
Kurzbeschreibung (Abstract):

We present NEAT-TCP, a novel technique to automatically generate congestion control algorithms in a data-driven fashion while optimizing towards a specified global system utility. NEAT-TCP employs an artificial neural network (ANN) in each node and generates a population of ANNs by means of an evolutionary algorithm called NEAT. The ANNs run independently from each other at the communication endpoints and take only features as inputs that are locally available at these nodes. We define the system utility as a combined maximization of overall throughput and throughput fairness between flows according to Jain's fairness index. The nodes are deployed in a grid topology in ns-3 simulations, which makes it particularly difficult to maximize the utility due to different interference levels for the data flows. In our experiments, NEAT-TCP achieves 69 % more fairness, 66 % less mean end-to-end delay and 71 % less packet loss in relation to TCP New Reno at the cost of 19 % less overall throughput, which meets our multi-criteria objective.

Zusätzliche Informationen:

Accepted

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Sichere Mobile Netze
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C1 : Netzzentrische Sicht
Hinterlegungsdatum: 22 Apr 2020 11:27
Letzte Änderung: 23 Aug 2021 12:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen