Hesse, Jens (2020)
Central leaves and EKOR strata on Shimura varieties with parahoric reduction.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00011543
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
We investigate the geometry of the special fiber of the integral model of a Shimura variety with parahoric level at a given prime place.
To be more precise, we deal with, firstly, the definition of central leaves in this situation, their local closedness, and the relationship between the folations for varying parahoric level. This is connected to the verification of axioms for integral models formulated by He and Rapoport.
Secondly, we deal with the EKOR stratification which interpolates between the Ekedahl-Oort and Kottwitz-Rapoport stratifications. In the Siegel case we give a geometric description by suitably generalizing the theory of G-zips of Moonen, Wedhorn, Pink and Ziegler to our context.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2020 | ||||
Autor(en): | Hesse, Jens | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Central leaves and EKOR strata on Shimura varieties with parahoric reduction | ||||
Sprache: | Englisch | ||||
Referenten: | Wedhorn, Prof. Dr. Torsten ; Richarz, Prof. Dr. Timo | ||||
Publikationsjahr: | März 2020 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 23 März 2020 | ||||
DOI: | 10.25534/tuprints-00011543 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/11543 | ||||
Kurzbeschreibung (Abstract): | We investigate the geometry of the special fiber of the integral model of a Shimura variety with parahoric level at a given prime place. To be more precise, we deal with, firstly, the definition of central leaves in this situation, their local closedness, and the relationship between the folations for varying parahoric level. This is connected to the verification of axioms for integral models formulated by He and Rapoport. Secondly, we deal with the EKOR stratification which interpolates between the Ekedahl-Oort and Kottwitz-Rapoport stratifications. In the Siegel case we give a geometric description by suitably generalizing the theory of G-zips of Moonen, Wedhorn, Pink and Ziegler to our context. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-115430 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Algebra 04 Fachbereich Mathematik > Algebra > Arithmetische algebraische Geometrie |
||||
Hinterlegungsdatum: | 12 Apr 2020 19:55 | ||||
Letzte Änderung: | 12 Apr 2020 19:55 | ||||
PPN: | |||||
Referenten: | Wedhorn, Prof. Dr. Torsten ; Richarz, Prof. Dr. Timo | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 23 März 2020 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |