TU Darmstadt / ULB / TUbiblio

Quantifying Uncertainty in Multivariate Time Series Pre-Processing

Bors, Christian ; Bernard, Jürgen ; Bögl, Markus ; Gschwandtner, Theresia ; Kohlhammer, Jörn ; Miksch, Silvia (2019)
Quantifying Uncertainty in Multivariate Time Series Pre-Processing.
International EuroVis Workshop on Visual Analytics (EuroVA). Porto, Portugal (03.06.2019-03.06.2019)
doi: 10.2312/eurova.20191121
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In multivariate time series analysis, pre-processing is integral for enabling analysis, but inevitably introduces uncertainty intothe data. Enabling the assessment of the uncertainty and allowing uncertainty-aware analysis, the uncertainty needs to bequantified initially. We address this challenge by formalizing the quantification of uncertainty for multivariate time series preprocessing. To tackle the large design space, we elaborate key considerations for quantifying and aggregating uncertainty. Weprovide an example how the quantified uncertainty is used in a multivariate time series pre-processing application to assess theeffectiveness of pre-processing steps and adjust the pipeline to minimize the introduction of uncertainty.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Bors, Christian ; Bernard, Jürgen ; Bögl, Markus ; Gschwandtner, Theresia ; Kohlhammer, Jörn ; Miksch, Silvia
Art des Eintrags: Bibliographie
Titel: Quantifying Uncertainty in Multivariate Time Series Pre-Processing
Sprache: Englisch
Publikationsjahr: 2019
Veranstaltungstitel: International EuroVis Workshop on Visual Analytics (EuroVA)
Veranstaltungsort: Porto, Portugal
Veranstaltungsdatum: 03.06.2019-03.06.2019
DOI: 10.2312/eurova.20191121
URL / URN: https://www.eurova.org/
Kurzbeschreibung (Abstract):

In multivariate time series analysis, pre-processing is integral for enabling analysis, but inevitably introduces uncertainty intothe data. Enabling the assessment of the uncertainty and allowing uncertainty-aware analysis, the uncertainty needs to bequantified initially. We address this challenge by formalizing the quantification of uncertainty for multivariate time series preprocessing. To tackle the large design space, we elaborate key considerations for quantifying and aggregating uncertainty. Weprovide an example how the quantified uncertainty is used in a multivariate time series pre-processing application to assess theeffectiveness of pre-processing steps and adjust the pipeline to minimize the introduction of uncertainty.

Freie Schlagworte: Multivariate time series Uncertainty visualization Visual analytics
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 09 Apr 2020 10:52
Letzte Änderung: 09 Apr 2020 10:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen