TU Darmstadt / ULB / TUbiblio

Visual Analysis of Probabilistic Infection Contagion in Hospitals

Wunderlich, Marcel ; Block, Isabelle ; Landesberger von Antburg, Tatiana ; Petzold, Markus ; Marschollek, Michael ; Scheithauer, Simone (2019)
Visual Analysis of Probabilistic Infection Contagion in Hospitals.
24. Vision, Modeling, and Visualization (VMV). Rostock (30.09.2019-02.10.2019)
doi: 10.2312/vmv.20191328
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Clinicians and hygienists need to know how an infection of one patient could be transmitted among other patients in the hospital (e.g., to prevent outbreaks). They need to analyze how many and which patients will possibly be infected, how fast the infection could spread, and which contacts are likely to transfer the infections within the hospital. Currently, infection contagion is modeled and visualized for populations only on an aggregate level, without identification and exploration of possible infection between individuals. We present a novel visual analytics approach that simulates the contagion in a contact graph of patients in a hospital. We propose a clustering approach to identify probable contagion scenarios in the simulation ensemble. Furthermore, our novel visual design for detailed assessment of transmission shows the temporal development of contagion per patient in one view. We demonstrate the capability of our approach to a real-world use case in a German hospital.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Wunderlich, Marcel ; Block, Isabelle ; Landesberger von Antburg, Tatiana ; Petzold, Markus ; Marschollek, Michael ; Scheithauer, Simone
Art des Eintrags: Bibliographie
Titel: Visual Analysis of Probabilistic Infection Contagion in Hospitals
Sprache: Englisch
Publikationsjahr: 2019
Veranstaltungstitel: 24. Vision, Modeling, and Visualization (VMV)
Veranstaltungsort: Rostock
Veranstaltungsdatum: 30.09.2019-02.10.2019
DOI: 10.2312/vmv.20191328
Kurzbeschreibung (Abstract):

Clinicians and hygienists need to know how an infection of one patient could be transmitted among other patients in the hospital (e.g., to prevent outbreaks). They need to analyze how many and which patients will possibly be infected, how fast the infection could spread, and which contacts are likely to transfer the infections within the hospital. Currently, infection contagion is modeled and visualized for populations only on an aggregate level, without identification and exploration of possible infection between individuals. We present a novel visual analytics approach that simulates the contagion in a contact graph of patients in a hospital. We propose a clustering approach to identify probable contagion scenarios in the simulation ensemble. Furthermore, our novel visual design for detailed assessment of transmission shows the temporal development of contagion per patient in one view. We demonstrate the capability of our approach to a real-world use case in a German hospital.

Freie Schlagworte: Visual analytics Hospital applications Contagion effects Dynamic graph layouts Clustering
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 14 Apr 2020 06:46
Letzte Änderung: 22 Jul 2021 18:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen