TU Darmstadt / ULB / TUbiblio

Enhancing Privacy via Hierarchical Federated Learning

Wainakh, Aidmar ; Sanchez Guinea, Alejandro ; Grube, Tim ; Mühlhäuser, Max (2020)
Enhancing Privacy via Hierarchical Federated Learning.
5th IEEE European Symposium on Security and Privacy Workshops (EuroS&PW 2020). virtual Conference (07.09.2020-11.09.2020)
doi: 10.1109/EuroSPW51379.2020.00053
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Federated learning suffers from several privacy-related issues that expose the participants to various threats. A number of these issues are aggravated by the centralized architecture of federated learning. In this paper, we discuss applying federated learning on a hierarchical architecture as a potential solution. We introduce the opportunities for more flexible decentralized control over the training process and its impact on the participants’ privacy. Furthermore, we investigate possibilities to enhance the efficiency and effectiveness of defense and verification methods.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Wainakh, Aidmar ; Sanchez Guinea, Alejandro ; Grube, Tim ; Mühlhäuser, Max
Art des Eintrags: Bibliographie
Titel: Enhancing Privacy via Hierarchical Federated Learning
Sprache: Englisch
Publikationsjahr: 22 Oktober 2020
Verlag: IEEE
Buchtitel: Proceedings : 5th IEEE European Symposium on Security and Privacy Workshops
Veranstaltungstitel: 5th IEEE European Symposium on Security and Privacy Workshops (EuroS&PW 2020)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 07.09.2020-11.09.2020
DOI: 10.1109/EuroSPW51379.2020.00053
Zugehörige Links:
Kurzbeschreibung (Abstract):

Federated learning suffers from several privacy-related issues that expose the participants to various threats. A number of these issues are aggravated by the centralized architecture of federated learning. In this paper, we discuss applying federated learning on a hierarchical architecture as a potential solution. We introduce the opportunities for more flexible decentralized control over the training process and its impact on the participants’ privacy. Furthermore, we investigate possibilities to enhance the efficiency and effectiveness of defense and verification methods.

Zusätzliche Informationen:

published in: 6th International Workshop on Privacy Engineering (IWPE'20), part of the Conference

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
Hinterlegungsdatum: 09 Apr 2020 09:35
Letzte Änderung: 22 Jul 2024 12:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen