TU Darmstadt / ULB / TUbiblio

Determining uncertainties in PICRUSt analysis – An easy approach for autotrophic nitrogen removal

Agrawal, Shelesh ; Kinh, Co Thi ; Schwartz, Thomas ; Hosomi, Masaaki ; Terada, Akihiko ; Lackner, Susanne (2019)
Determining uncertainties in PICRUSt analysis – An easy approach for autotrophic nitrogen removal.
In: Biochemical Engineering Journal, 152
doi: 10.1016/j.bej.2019.107328
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The diversity and dynamics of microorganisms in engineered ecosystems have a high impact on performance and operational stability. Nitrogen removal from wastewater is one example of such complex and dynamic ecosystems. Following the microbial community composition and its functional potential is highly valuable information for optimizing performance. Molecular methods and data analysis tools have become more and more popular in recent years. PICRUSt, a bioinformatics tool to predict the functional potential of a sample from 16S rRNA amplicon sequencing, was tested in the context of autotrophic nitrogen removal for its accuracy. Two experimental studies were extended by qPCR to demonstrate how qPCR can be used to deliver information about the accuracy of PICRUSt predictions. Two main points were discovered: (1) the correlation between qPCR data and PICRUSt predictions depends on the relative abundance of the target gene. With higher abundance, better correlations are achievable; (2) the more genome information available, the stronger the correlation.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Agrawal, Shelesh ; Kinh, Co Thi ; Schwartz, Thomas ; Hosomi, Masaaki ; Terada, Akihiko ; Lackner, Susanne
Art des Eintrags: Bibliographie
Titel: Determining uncertainties in PICRUSt analysis – An easy approach for autotrophic nitrogen removal
Sprache: Englisch
Publikationsjahr: 8 August 2019
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Biochemical Engineering Journal
Jahrgang/Volume einer Zeitschrift: 152
DOI: 10.1016/j.bej.2019.107328
URL / URN: http://www.sciencedirect.com/science/article/pii/S1369703X19...
Kurzbeschreibung (Abstract):

The diversity and dynamics of microorganisms in engineered ecosystems have a high impact on performance and operational stability. Nitrogen removal from wastewater is one example of such complex and dynamic ecosystems. Following the microbial community composition and its functional potential is highly valuable information for optimizing performance. Molecular methods and data analysis tools have become more and more popular in recent years. PICRUSt, a bioinformatics tool to predict the functional potential of a sample from 16S rRNA amplicon sequencing, was tested in the context of autotrophic nitrogen removal for its accuracy. Two experimental studies were extended by qPCR to demonstrate how qPCR can be used to deliver information about the accuracy of PICRUSt predictions. Two main points were discovered: (1) the correlation between qPCR data and PICRUSt predictions depends on the relative abundance of the target gene. With higher abundance, better correlations are achievable; (2) the more genome information available, the stronger the correlation.

Freie Schlagworte: Nitrogen removal Wastewater treatment (q)PCR Next-generation sequencing Data analysis Uncertainty
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut IWAR - Wasser- und Abfalltechnik, Umwelt- und Raumplanung
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut IWAR - Wasser- und Abfalltechnik, Umwelt- und Raumplanung > Fachgebiet Abwasserwirtschaft
Hinterlegungsdatum: 02 Apr 2020 10:17
Letzte Änderung: 02 Apr 2020 10:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen