Reinhard, D. ; Fauß, M. ; Zoubir, A. M. (2022)
Bayesian Sequential Joint Detection and Estimation Under Multiple Hypotheses.
In: Sequential Analysis, 41 (2)
doi: 10.1080/07474946.2022.2043053
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We consider the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution. This problem is investigated in a sequential setup under mild assumptions on the underlying random process. The optimal method minimizes the expected number of samples while ensuring that the average detection/estimation errors do not exceed a certain level. After converting the constrained problem to an unconstrained one, we characterize the general solution by a nonlinear Bellman equation, which is parameterized by a set of cost coefficients. A strong connection between the derivatives of the cost function with respect to the coefficients and the detection/estimation errors of the sequential procedure is derived. Based on this fundamental property, we further show that for suitably chosen cost coefficients the solutions of the constrained and the unconstrained problem coincide. We present two approaches to finding the optimal coefficients. For the first approach, the final optimization problem is converted into a linear program, whereas the second approach solves it with a projected gradient ascent. To illustrate the theoretical results, we consider two problems for which the optimal schemes are designed numerically. Using Monte Carlo simulations, it is validated that the numerical results agree with the theory.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Reinhard, D. ; Fauß, M. ; Zoubir, A. M. |
Art des Eintrags: | Bibliographie |
Titel: | Bayesian Sequential Joint Detection and Estimation Under Multiple Hypotheses |
Sprache: | Englisch |
Publikationsjahr: | 15 Juli 2022 |
Verlag: | Taylor & Francis |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Sequential Analysis |
Jahrgang/Volume einer Zeitschrift: | 41 |
(Heft-)Nummer: | 2 |
DOI: | 10.1080/07474946.2022.2043053 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We consider the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution. This problem is investigated in a sequential setup under mild assumptions on the underlying random process. The optimal method minimizes the expected number of samples while ensuring that the average detection/estimation errors do not exceed a certain level. After converting the constrained problem to an unconstrained one, we characterize the general solution by a nonlinear Bellman equation, which is parameterized by a set of cost coefficients. A strong connection between the derivatives of the cost function with respect to the coefficients and the detection/estimation errors of the sequential procedure is derived. Based on this fundamental property, we further show that for suitably chosen cost coefficients the solutions of the constrained and the unconstrained problem coincide. We present two approaches to finding the optimal coefficients. For the first approach, the final optimization problem is converted into a linear program, whereas the second approach solves it with a projected gradient ascent. To illustrate the theoretical results, we consider two problems for which the optimal schemes are designed numerically. Using Monte Carlo simulations, it is validated that the numerical results agree with the theory. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung |
Hinterlegungsdatum: | 02 Apr 2020 09:18 |
Letzte Änderung: | 10 Okt 2022 14:43 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |