TU Darmstadt / ULB / TUbiblio

Designing rare-earth free permanent magnets in heusler alloys via interstitial doping

Gao, Qiang ; Opahle, Ingo ; Gutfleisch, Oliver ; Zhang, Hongbin (2020)
Designing rare-earth free permanent magnets in heusler alloys via interstitial doping.
In: Acta Materialia, 186
doi: 10.1016/j.actamat.2019.12.049
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Based on high-throughput density functional theory calculations, we investigated the effects of light interstitial H, B, C, and N atoms on the magnetic properties of cubic Heusler alloys, with the aim to design new rare-earth free permanent magnets. It is observed that the interstitial atoms induce significant tetragonal distortions, leading to 32 candidates with large ( > 0.4 MJ/m3) uniaxial magneto-crystalline anisotropy energies (MAEs) and 10 cases with large in-plane MAEs. Detailed analysis following the perturbation theory and chemical bonding reveals the strong MAE originates from the local crystalline distortions and thus the changes of the chemical bonding around the interstitials. This provides a valuable way to tailor the MAEs to obtain competitive permanent magnets, filling the gap between high performance Sm-Co/Nd-Fe-B and widely used ferrite/AlNiCo materials.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Gao, Qiang ; Opahle, Ingo ; Gutfleisch, Oliver ; Zhang, Hongbin
Art des Eintrags: Bibliographie
Titel: Designing rare-earth free permanent magnets in heusler alloys via interstitial doping
Sprache: Englisch
Publikationsjahr: 3 Januar 2020
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 186
DOI: 10.1016/j.actamat.2019.12.049
URL / URN: https://doi.org/10.1016/j.actamat.2019.12.049
Kurzbeschreibung (Abstract):

Based on high-throughput density functional theory calculations, we investigated the effects of light interstitial H, B, C, and N atoms on the magnetic properties of cubic Heusler alloys, with the aim to design new rare-earth free permanent magnets. It is observed that the interstitial atoms induce significant tetragonal distortions, leading to 32 candidates with large ( > 0.4 MJ/m3) uniaxial magneto-crystalline anisotropy energies (MAEs) and 10 cases with large in-plane MAEs. Detailed analysis following the perturbation theory and chemical bonding reveals the strong MAE originates from the local crystalline distortions and thus the changes of the chemical bonding around the interstitials. This provides a valuable way to tailor the MAEs to obtain competitive permanent magnets, filling the gap between high performance Sm-Co/Nd-Fe-B and widely used ferrite/AlNiCo materials.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 19 Mär 2020 07:17
Letzte Änderung: 13 Jan 2024 16:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen