TU Darmstadt / ULB / TUbiblio

Revisiting the Binary Linearization Technique for Surface Realization

Puzikov, Yevgeniy ; Gardent, Claire ; Dagan, Ido ; Gurevych, Iryna (2019)
Revisiting the Binary Linearization Technique for Surface Realization.
The 12th International Conference on Natural Language Generation (INLG 2019). Tokyo, Japan (29.10.2019-01.11.2019)
doi: 10.18653/v1/W19-8635
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

End-to-end neural approaches have achieved state-of-the-art performance in many natural language processing (NLP) tasks. Yet, they often lack transparency of the underlying decision-making process, hindering error analysis and certain model improvements. In this work, we revisit the binary linearization approach to surface realization, which exhibits more interpretable behavior, but was falling short in terms of prediction accuracy. We show how enriching the training data to better capture word order constraints almost doubles the performance of the system. We further demonstrate that encoding both local and global prediction contexts yields another considerable performance boost. With the proposed modifications, the system which ranked low in the latest shared task on multilingual surface realization now achieves best results in five out of ten languages, while being on par with the state-of-the-art approaches in others.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Puzikov, Yevgeniy ; Gardent, Claire ; Dagan, Ido ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Revisiting the Binary Linearization Technique for Surface Realization
Sprache: Englisch
Publikationsjahr: 5 September 2019
Ort: Tokyo, Japan
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 12th International Conference on Natural Language Generation
Veranstaltungstitel: The 12th International Conference on Natural Language Generation (INLG 2019)
Veranstaltungsort: Tokyo, Japan
Veranstaltungsdatum: 29.10.2019-01.11.2019
DOI: 10.18653/v1/W19-8635
URL / URN: https://www.aclweb.org/anthology/W19-8635.pdf
Zugehörige Links:
Kurzbeschreibung (Abstract):

End-to-end neural approaches have achieved state-of-the-art performance in many natural language processing (NLP) tasks. Yet, they often lack transparency of the underlying decision-making process, hindering error analysis and certain model improvements. In this work, we revisit the binary linearization approach to surface realization, which exhibits more interpretable behavior, but was falling short in terms of prediction accuracy. We show how enriching the training data to better capture word order constraints almost doubles the performance of the system. We further demonstrate that encoding both local and global prediction contexts yields another considerable performance boost. With the proposed modifications, the system which ranked low in the latest shared task on multilingual surface realization now achieves best results in five out of ten languages, while being on par with the state-of-the-art approaches in others.

Freie Schlagworte: AIPHES,UKP_p_DIP,UKP_p_TGTOVE,FAZIT
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 18 Feb 2020 12:12
Letzte Änderung: 24 Mai 2024 13:00
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen