Völkel, Sabrina ; Hein, Sascha ; Benker, Nathalie ; Pfeifer, Felicitas ; Lenz, Christof ; Losensky, Gerald (2020)
How to Cope With Heavy Metal Ions: Cellular and Proteome-Level Stress Response to Divalent Copper and Nickel in Halobacterium salinarum R1 Planktonic and Biofilm Cells.
In: Frontiers in Microbiology, 2020, 10
doi: 10.25534/tuprints-00011410
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Halobacterium salinarum R1 is an extremely halophilic archaeon capable of adhesion and forming biofilms, allowing it to adjust to a range of growth conditions. We have recently shown that living in biofilms facilitates its survival under Cu2+ and Ni2+ stress, with specific rearrangements of the biofilm architecture observed following exposition. In this study, quantitative analyses were performed by SWATH mass spectrometry to determine the respective proteomes of planktonic and biofilm cells after exposition to Cu2+ and Ni2+.Quantitative data for 1180 proteins were obtained, corresponding to 46% of the predicted proteome. In planktonic cells, 234 of 1180 proteins showed significant abundance changes after metal ion treatment, of which 47% occurred in Cu2+ and Ni2+ treated samples. In biofilms, significant changes were detected for 52 proteins. Only three proteins changed under both conditions, suggesting metal-specific stress responses in biofilms. Deletion strains were generated to assess the potential role of selected target genes. Strongest effects were observed for 1OE5245F and 1OE2816F strains which exhibited increased and decreased biofilm mass after Ni2+ exposure, respectively. Moreover, EPS obviously plays a crucial role in H. salinarum metal ion resistance. Further efforts are required to elucidate the molecular basis and interplay of additional resistance mechanisms.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2020 |
Autor(en): | Völkel, Sabrina ; Hein, Sascha ; Benker, Nathalie ; Pfeifer, Felicitas ; Lenz, Christof ; Losensky, Gerald |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | How to Cope With Heavy Metal Ions: Cellular and Proteome-Level Stress Response to Divalent Copper and Nickel in Halobacterium salinarum R1 Planktonic and Biofilm Cells |
Sprache: | Englisch |
Publikationsjahr: | 2020 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2020 |
Verlag: | Frontiers |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Frontiers in Microbiology |
Jahrgang/Volume einer Zeitschrift: | 10 |
DOI: | 10.25534/tuprints-00011410 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/11410 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung aus gefördertem Golden Open Access |
Kurzbeschreibung (Abstract): | Halobacterium salinarum R1 is an extremely halophilic archaeon capable of adhesion and forming biofilms, allowing it to adjust to a range of growth conditions. We have recently shown that living in biofilms facilitates its survival under Cu2+ and Ni2+ stress, with specific rearrangements of the biofilm architecture observed following exposition. In this study, quantitative analyses were performed by SWATH mass spectrometry to determine the respective proteomes of planktonic and biofilm cells after exposition to Cu2+ and Ni2+.Quantitative data for 1180 proteins were obtained, corresponding to 46% of the predicted proteome. In planktonic cells, 234 of 1180 proteins showed significant abundance changes after metal ion treatment, of which 47% occurred in Cu2+ and Ni2+ treated samples. In biofilms, significant changes were detected for 52 proteins. Only three proteins changed under both conditions, suggesting metal-specific stress responses in biofilms. Deletion strains were generated to assess the potential role of selected target genes. Strongest effects were observed for 1OE5245F and 1OE2816F strains which exhibited increased and decreased biofilm mass after Ni2+ exposure, respectively. Moreover, EPS obviously plays a crucial role in H. salinarum metal ion resistance. Further efforts are required to elucidate the molecular basis and interplay of additional resistance mechanisms. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-114103 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie |
Fachbereich(e)/-gebiet(e): | 10 Fachbereich Biologie 10 Fachbereich Biologie > Microbiology and Archaea |
Hinterlegungsdatum: | 02 Feb 2020 20:55 |
Letzte Änderung: | 09 Aug 2024 08:33 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- How to Cope With Heavy Metal Ions: Cellular and Proteome-Level Stress Response to Divalent Copper and Nickel in Halobacterium salinarum R1 Planktonic and Biofilm Cells. (deposited 02 Feb 2020 20:55) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |