TU Darmstadt / ULB / TUbiblio

Rapid Crystallization and Kinetic Freezing of Site-Disorder in the Lithium Superionic Argyrodite Li6PS5Br

Gautam, Ajay ; Sadowski, Marcel ; Prinz, Nils ; Eickhoff, Henrik ; Minafra, Nicolò ; Ghidiu, Michael ; Culver, Sean P. ; Albe, Karsten ; Fässler, Thomas F. ; Zobel, Mirijam ; Zeier, Wolfgang G. (2019)
Rapid Crystallization and Kinetic Freezing of Site-Disorder in the Lithium Superionic Argyrodite Li6PS5Br.
In: Chemistry of Materials, 31 (24)
doi: 10.1021/acs.chemmater.9b03852
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li6PS5X (X = Cl, Br, and I), a site-disorder between the anions S2– and X– has been observed, which strongly affects the ionic transport and appears to be a function of the halide present. In this work, we show how such a disorder in Li6PS5Br can be engineered via the synthesis method. By comparing fast cooling (i.e., quenching) to more slowly cooled samples, we find that the anion site-disorder is higher at elevated temperatures, and that fast cooling can be used to kinetically trap the desired disorder, leading to higher ionic conductivities as shown by impedance spectroscopy in combination with ab initio molecular dynamics. Furthermore, we observe that after milling, a crystalline lithium argyrodite can be obtained within 1 min of heat treatment. This rapid crystallization highlights the reactive nature of mechanical milling and shows that long reaction times with high energy consumption are not needed in this class of materials. The fact that site-disorder induced via quenching is beneficial for ionic transport provides an additional approach for the optimization and design of lithium superionic conductors.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Gautam, Ajay ; Sadowski, Marcel ; Prinz, Nils ; Eickhoff, Henrik ; Minafra, Nicolò ; Ghidiu, Michael ; Culver, Sean P. ; Albe, Karsten ; Fässler, Thomas F. ; Zobel, Mirijam ; Zeier, Wolfgang G.
Art des Eintrags: Bibliographie
Titel: Rapid Crystallization and Kinetic Freezing of Site-Disorder in the Lithium Superionic Argyrodite Li6PS5Br
Sprache: Englisch
Publikationsjahr: 15 November 2019
Verlag: American Chemical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Chemistry of Materials
Jahrgang/Volume einer Zeitschrift: 31
(Heft-)Nummer: 24
DOI: 10.1021/acs.chemmater.9b03852
URL / URN: https://doi.org/10.1021/acs.chemmater.9b03852
Kurzbeschreibung (Abstract):

Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li6PS5X (X = Cl, Br, and I), a site-disorder between the anions S2– and X– has been observed, which strongly affects the ionic transport and appears to be a function of the halide present. In this work, we show how such a disorder in Li6PS5Br can be engineered via the synthesis method. By comparing fast cooling (i.e., quenching) to more slowly cooled samples, we find that the anion site-disorder is higher at elevated temperatures, and that fast cooling can be used to kinetically trap the desired disorder, leading to higher ionic conductivities as shown by impedance spectroscopy in combination with ab initio molecular dynamics. Furthermore, we observe that after milling, a crystalline lithium argyrodite can be obtained within 1 min of heat treatment. This rapid crystallization highlights the reactive nature of mechanical milling and shows that long reaction times with high energy consumption are not needed in this class of materials. The fact that site-disorder induced via quenching is beneficial for ionic transport provides an additional approach for the optimization and design of lithium superionic conductors.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 28 Jan 2020 07:23
Letzte Änderung: 13 Jan 2024 13:38
PPN:
Projekte: BMBF Projekt FESTBATT unter den Förderkennzeichen 03XP0177A und 03XP0174A, SPP2080, Förderkennzeichen ZO 369/2-1
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen