TU Darmstadt / ULB / TUbiblio

Accelerated Steady-State Torque Computation for Induction Machines using Parallel-In-Time Algorithms

Bast, Denys ; Kulchytska-Ruchka, Iryna ; Schöps, Sebastian ; Rain, Oliver (2020)
Accelerated Steady-State Torque Computation for Induction Machines using Parallel-In-Time Algorithms.
In: IEEE Transactions on Magnetics, 56 (2)
doi: 10.1109/TMAG.2019.2945510
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

This article focuses on efficient steady-state computations of induction machines. In particular, the periodic Parareal algorithm with the initial-value coarse problem (PP-IC) is considered for acceleration of classical time-stepping simulations via non-intrusive parallelization in the time domain, i.e., existing implementations can be reused. Superiority of this parallel-in-time method is in its direct applicability to time-periodic problems, compared to, e.g., the standard Parareal method, which only solves an initial-value problem, starting from a prescribed initial value. PP-IC is exploited here to obtain the steady state of several operating points of an asynchronous (induction) motor used in an electric vehicle drive. Numerical experiments show that acceleration up to several dozens of times can be obtained, depending on availability of parallel processing units. The comparison of PP-IC with the existing time-periodic explicit error correction method highlights better robustness and efficiency of the considered time-parallel approach.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Bast, Denys ; Kulchytska-Ruchka, Iryna ; Schöps, Sebastian ; Rain, Oliver
Art des Eintrags: Bibliographie
Titel: Accelerated Steady-State Torque Computation for Induction Machines using Parallel-In-Time Algorithms
Sprache: Englisch
Publikationsjahr: Februar 2020
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Magnetics
Jahrgang/Volume einer Zeitschrift: 56
(Heft-)Nummer: 2
DOI: 10.1109/TMAG.2019.2945510
Zugehörige Links:
Kurzbeschreibung (Abstract):

This article focuses on efficient steady-state computations of induction machines. In particular, the periodic Parareal algorithm with the initial-value coarse problem (PP-IC) is considered for acceleration of classical time-stepping simulations via non-intrusive parallelization in the time domain, i.e., existing implementations can be reused. Superiority of this parallel-in-time method is in its direct applicability to time-periodic problems, compared to, e.g., the standard Parareal method, which only solves an initial-value problem, starting from a prescribed initial value. PP-IC is exploited here to obtain the steady state of several operating points of an asynchronous (induction) motor used in an electric vehicle drive. Numerical experiments show that acceleration up to several dozens of times can be obtained, depending on availability of parallel processing units. The comparison of PP-IC with the existing time-periodic explicit error correction method highlights better robustness and efficiency of the considered time-parallel approach.

Freie Schlagworte: time-stepping,parallel
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Computational Electromagnetics
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Theorie Elektromagnetischer Felder (ab 01.01.2019 umbenannt in Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Theorie Elektromagnetischer Felder (ab 01.01.2019 umbenannt in Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder) > Computational Engineering (ab 01.01.2019 umbenannt in Computational Electromagnetics)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 20 Jan 2020 13:21
Letzte Änderung: 23 Okt 2024 08:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen