Bast, Denys ; Kulchytska-Ruchka, Iryna ; Schöps, Sebastian ; Rain, Oliver (2020)
Accelerated Steady-State Torque Computation for Induction Machines using Parallel-In-Time Algorithms.
In: IEEE Transactions on Magnetics, 56 (2)
doi: 10.1109/TMAG.2019.2945510
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
This article focuses on efficient steady-state computations of induction machines. In particular, the periodic Parareal algorithm with the initial-value coarse problem (PP-IC) is considered for acceleration of classical time-stepping simulations via non-intrusive parallelization in the time domain, i.e., existing implementations can be reused. Superiority of this parallel-in-time method is in its direct applicability to time-periodic problems, compared to, e.g., the standard Parareal method, which only solves an initial-value problem, starting from a prescribed initial value. PP-IC is exploited here to obtain the steady state of several operating points of an asynchronous (induction) motor used in an electric vehicle drive. Numerical experiments show that acceleration up to several dozens of times can be obtained, depending on availability of parallel processing units. The comparison of PP-IC with the existing time-periodic explicit error correction method highlights better robustness and efficiency of the considered time-parallel approach.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2020 |
Autor(en): | Bast, Denys ; Kulchytska-Ruchka, Iryna ; Schöps, Sebastian ; Rain, Oliver |
Art des Eintrags: | Bibliographie |
Titel: | Accelerated Steady-State Torque Computation for Induction Machines using Parallel-In-Time Algorithms |
Sprache: | Englisch |
Publikationsjahr: | Februar 2020 |
Verlag: | IEEE |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Transactions on Magnetics |
Jahrgang/Volume einer Zeitschrift: | 56 |
(Heft-)Nummer: | 2 |
DOI: | 10.1109/TMAG.2019.2945510 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | This article focuses on efficient steady-state computations of induction machines. In particular, the periodic Parareal algorithm with the initial-value coarse problem (PP-IC) is considered for acceleration of classical time-stepping simulations via non-intrusive parallelization in the time domain, i.e., existing implementations can be reused. Superiority of this parallel-in-time method is in its direct applicability to time-periodic problems, compared to, e.g., the standard Parareal method, which only solves an initial-value problem, starting from a prescribed initial value. PP-IC is exploited here to obtain the steady state of several operating points of an asynchronous (induction) motor used in an electric vehicle drive. Numerical experiments show that acceleration up to several dozens of times can be obtained, depending on availability of parallel processing units. The comparison of PP-IC with the existing time-periodic explicit error correction method highlights better robustness and efficiency of the considered time-parallel approach. |
Freie Schlagworte: | time-stepping,parallel |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Computational Electromagnetics 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Theorie Elektromagnetischer Felder (ab 01.01.2019 umbenannt in Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder) 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Theorie Elektromagnetischer Felder (ab 01.01.2019 umbenannt in Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder) > Computational Engineering (ab 01.01.2019 umbenannt in Computational Electromagnetics) 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) |
Hinterlegungsdatum: | 20 Jan 2020 13:21 |
Letzte Änderung: | 23 Okt 2024 08:01 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |