TU Darmstadt / ULB / TUbiblio

Enhanced hydrogen evolution reaction catalyzed by carbon‐rich Mo4.8Si3C0.6/C/SiC nanocomposites via a PDC approach

Feng, Yao ; Yu, Zhaoju ; Riedel, Ralf (2020)
Enhanced hydrogen evolution reaction catalyzed by carbon‐rich Mo4.8Si3C0.6/C/SiC nanocomposites via a PDC approach.
In: Journal of the American Ceramic Society, 103 (2)
doi: 10.1111/jace.16824
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this study, mesoporous carbon‐rich Mo4.8Si3C0.6/C/SiC ceramic nanocomposites were successfully prepared via a single‐source precursor route, starting from allylhydridopolycarbosilane (AHPCS, SMP‐10), bis(acetylacetonato) dioxomolybdenum (VI) [MoO2(acac)2], and divinylbenzene (DVB). Besides, polystyrene (PS) was used as a pore former. The obtained carbon‐rich single‐source precursor/PS mixtures were pyrolyzed at 1100°C, and then annealed at 1350°C‐1600°C to fabricate a series of carbon‐rich Mo4.8Si3C0.6/C/SiC ceramics comprised of high carbon content above 50 wt%. In comparison to the carbon‐poor materials, the carbon‐rich samples retain the higher specific surface area up to 214.6‐304 m2/g at higher annealing temperatures (1350°C‐1600°C) due to the enhancement of carbothermal reaction. The carbon‐rich samples synthesized at 1500°C, denoted as SM/Mo/PS/DVB 2‐1‐4‐2 1500 exhibit enhanced electrocatalytic performance with ultra‐low overpotentials of 119 mV vs reversible hydrogen electrode at a current density of 10 mA cm−2 in acidic media, which is superior to that of the Mo4.8Si3C0.6/C/SiC ceramic (138 mV) with lower carbon content reported in our previous study. Therefore, our porous materials comprised of high carbon content and Nowotny phase (Mo4.8Si3C0.6, NP) are considered as promising catalysts for the hydrogen evolution reaction (HER).

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Feng, Yao ; Yu, Zhaoju ; Riedel, Ralf
Art des Eintrags: Bibliographie
Titel: Enhanced hydrogen evolution reaction catalyzed by carbon‐rich Mo4.8Si3C0.6/C/SiC nanocomposites via a PDC approach
Sprache: Englisch
Publikationsjahr: Februar 2020
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 103
(Heft-)Nummer: 2
DOI: 10.1111/jace.16824
URL / URN: https://doi.org/10.1111/jace.16824
Kurzbeschreibung (Abstract):

In this study, mesoporous carbon‐rich Mo4.8Si3C0.6/C/SiC ceramic nanocomposites were successfully prepared via a single‐source precursor route, starting from allylhydridopolycarbosilane (AHPCS, SMP‐10), bis(acetylacetonato) dioxomolybdenum (VI) [MoO2(acac)2], and divinylbenzene (DVB). Besides, polystyrene (PS) was used as a pore former. The obtained carbon‐rich single‐source precursor/PS mixtures were pyrolyzed at 1100°C, and then annealed at 1350°C‐1600°C to fabricate a series of carbon‐rich Mo4.8Si3C0.6/C/SiC ceramics comprised of high carbon content above 50 wt%. In comparison to the carbon‐poor materials, the carbon‐rich samples retain the higher specific surface area up to 214.6‐304 m2/g at higher annealing temperatures (1350°C‐1600°C) due to the enhancement of carbothermal reaction. The carbon‐rich samples synthesized at 1500°C, denoted as SM/Mo/PS/DVB 2‐1‐4‐2 1500 exhibit enhanced electrocatalytic performance with ultra‐low overpotentials of 119 mV vs reversible hydrogen electrode at a current density of 10 mA cm−2 in acidic media, which is superior to that of the Mo4.8Si3C0.6/C/SiC ceramic (138 mV) with lower carbon content reported in our previous study. Therefore, our porous materials comprised of high carbon content and Nowotny phase (Mo4.8Si3C0.6, NP) are considered as promising catalysts for the hydrogen evolution reaction (HER).

Freie Schlagworte: Carbon-rich ceramic nanocomposites; high BET surface area; hydrogen evolution reaction; nowotny phase; molybdenum-carbide; electrical-conductivity efficient; electrocatalyst; highly efficient; cross-linking; ceramics; graphene; nanoparticles; polycarbosilane; water
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 19 Dez 2019 09:07
Letzte Änderung: 13 Jan 2024 11:02
PPN:
Projekte: Alexander von Humboldt‐Stiftung, China Scholarship Council. Grant Number: 201606310021, National Natural Science Foundation of China. Grant Number: 51872246
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen