TU Darmstadt / ULB / TUbiblio

A Darwin Time Domain Scheme for the Simulation of Transient Quasistatic Electromagnetic Fields Including Resistive, Capacitive and Inductive Effects

Clemens, Markus ; Kähne, Bernhard ; Schöps, Sebastian (2019)
A Darwin Time Domain Scheme for the Simulation of Transient Quasistatic Electromagnetic Fields Including Resistive, Capacitive and Inductive Effects.
In: 2019 Kleinheubach Conference
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

The Darwin field model addresses an approximation to Maxwell's equations where radiation effects are neglected. It allows to describe general quasistatic electromagnetic field phenomena including inductive, resistive and capacitive effects. A Darwin formulation based on the Darwin-Ampere equation and the implicitly included Darwin-continuity equation yields a non-symmetric and ill-conditioned algebraic systems of equations received from applying a geometric spatial discretization scheme and the implicit backward differentiation time integration method. A two-step solution scheme is presented where the underlying block-Gauss-Seidel method is shown to change the initially chosen gauge condition and the resulting scheme only requires to solve a weakly coupled electro-quasistatic and a magneto-quasistatic discrete field formulation consecutively in each time step. Results of numerical test problems validate the chosen approach.

Typ des Eintrags: Buchkapitel
Erschienen: 2019
Autor(en): Clemens, Markus ; Kähne, Bernhard ; Schöps, Sebastian
Art des Eintrags: Bibliographie
Titel: A Darwin Time Domain Scheme for the Simulation of Transient Quasistatic Electromagnetic Fields Including Resistive, Capacitive and Inductive Effects
Sprache: Englisch
Publikationsjahr: 4 November 2019
Ort: Miltenberg
Buchtitel: 2019 Kleinheubach Conference
URL / URN: https://ieeexplore.ieee.org/document/8890184
Kurzbeschreibung (Abstract):

The Darwin field model addresses an approximation to Maxwell's equations where radiation effects are neglected. It allows to describe general quasistatic electromagnetic field phenomena including inductive, resistive and capacitive effects. A Darwin formulation based on the Darwin-Ampere equation and the implicitly included Darwin-continuity equation yields a non-symmetric and ill-conditioned algebraic systems of equations received from applying a geometric spatial discretization scheme and the implicit backward differentiation time integration method. A two-step solution scheme is presented where the underlying block-Gauss-Seidel method is shown to change the initially chosen gauge condition and the resulting scheme only requires to solve a weakly coupled electro-quasistatic and a magneto-quasistatic discrete field formulation consecutively in each time step. Results of numerical test problems validate the chosen approach.

Zusätzliche Informationen:

URSI Kleinheubacher Tagung (KHB 2019), September 23.–25., 2019, Miltenberg

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Computational Electromagnetics
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Theorie Elektromagnetischer Felder (ab 01.01.2019 umbenannt in Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Theorie Elektromagnetischer Felder (ab 01.01.2019 umbenannt in Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder) > Computational Engineering (ab 01.01.2019 umbenannt in Computational Electromagnetics)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 18 Dez 2019 07:27
Letzte Änderung: 08 Mai 2024 11:15
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen