Hartmann, Maximilian ; Fricke, Mathis ; Weimar, Lukas ; Gründing, Dirk ; Marić, Tomislav ; Bothe, Dieter ; Hardt, Steffen (2019)
Breakup dynamics of capillary bridges on hydrophobic stripes.
doi: 10.48550/arXiv.1910.01887
Report, Bibliographie
Kurzbeschreibung (Abstract)
The breakup dynamics of a capillary bridge on a hydrophobic stripe between two hydrophilic stripes is studied experimentally and numerically. The capillary bridge is formed from an evaporating water droplet wetting three neighboring stripes of a chemically patterned surface. The simulations are based on the Volume-of-Fluid (VOF) method implemented in Free Surface 3D (FS3D). In order to construct physically realistic initial data for the VOF simulation, Surface Evolver is employed to calculate an initial configuration consistent with experiments. Numerical instabilities at the contact line are reduced by a novel adaptation of the Navier-slip boundary condition. By considering the breakup process in phase space, the breakup dynamics can be evaluated without the uncertainty in determining the precise breakup time. It is found that within an intermediate inviscid regime, the breakup dynamics follows a $t\^2/3$-scaling, indicating that the breakup process is dominated by the balance of inertial and capillary forces. For smaller bridge widths, the breakup velocity reaches a plateau, which is due to viscous forces becoming more important. In the final stage of breakup, the capillary bridge forms a liquid thread that breaks up consistent with the Rayleigh-Plateau instability. The critical wavelength is identical to the distance between the tips of two liquid cones between which the thread is arranged. The existence of satellite droplets in a regular pattern indicates that the primary breakup process is followed by self-similar secondary breakups.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2019 |
Autor(en): | Hartmann, Maximilian ; Fricke, Mathis ; Weimar, Lukas ; Gründing, Dirk ; Marić, Tomislav ; Bothe, Dieter ; Hardt, Steffen |
Art des Eintrags: | Bibliographie |
Titel: | Breakup dynamics of capillary bridges on hydrophobic stripes |
Sprache: | Englisch |
Publikationsjahr: | 4 Oktober 2019 |
Verlag: | arXiV |
Reihe: | Fluid Dynamics |
Auflage: | 1. Version |
DOI: | 10.48550/arXiv.1910.01887 |
URL / URN: | http://arxiv.org/pdf/1910.01887v1 |
Kurzbeschreibung (Abstract): | The breakup dynamics of a capillary bridge on a hydrophobic stripe between two hydrophilic stripes is studied experimentally and numerically. The capillary bridge is formed from an evaporating water droplet wetting three neighboring stripes of a chemically patterned surface. The simulations are based on the Volume-of-Fluid (VOF) method implemented in Free Surface 3D (FS3D). In order to construct physically realistic initial data for the VOF simulation, Surface Evolver is employed to calculate an initial configuration consistent with experiments. Numerical instabilities at the contact line are reduced by a novel adaptation of the Navier-slip boundary condition. By considering the breakup process in phase space, the breakup dynamics can be evaluated without the uncertainty in determining the precise breakup time. It is found that within an intermediate inviscid regime, the breakup dynamics follows a $t\^2/3$-scaling, indicating that the breakup process is dominated by the balance of inertial and capillary forces. For smaller bridge widths, the breakup velocity reaches a plateau, which is due to viscous forces becoming more important. In the final stage of breakup, the capillary bridge forms a liquid thread that breaks up consistent with the Rayleigh-Plateau instability. The critical wavelength is identical to the distance between the tips of two liquid cones between which the thread is arranged. The existence of satellite droplets in a regular pattern indicates that the primary breakup process is followed by self-similar secondary breakups. |
Freie Schlagworte: | DFG|SFB1194|TP Z-INF Bothe |
Zusätzliche Informationen: | Preprint |
Fachbereich(e)/-gebiet(e): | DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente > A02: Experimentelle Untersuchungen zur Koaleszenz und zum Aufriss von Tropfen auf festen Oberflächen - Leitkonfiguration Tropfen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B01: Modellierung und VOF-basierte Simulation der Multiphysik irreversibler thermodynamischer Transferprozesse an dynamischen Kontaktlinien DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B02: Direkte Numerische Simulation lokal gekoppelter Grenzflächentransportprozesse an Kontaktlinien bei dynamischen Benetzungsprozessen Profilbereiche Profilbereiche > Thermo-Fluids & Interfaces |
TU-Projekte: | DFG|SFB1194|TP Z-INF Bothe |
Hinterlegungsdatum: | 11 Dez 2019 12:31 |
Letzte Änderung: | 29 Mai 2024 10:25 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |