TU Darmstadt / ULB / TUbiblio

Contact line advection using the geometrical Volume-of-Fluid method

Fricke, Mathis ; Marić, Tomislav ; Bothe, Dieter (2019)
Contact line advection using the geometrical Volume-of-Fluid method.
Report, Bibliographie

Kurzbeschreibung (Abstract)

We consider the geometrical problem of the passive transport of a hypersurface by a prescribed velocity field in the special case where the hypersurface intersects the domain boundary. This problem emerges from the discretization of continuum models for dynamic wetting. The kinematic evolution equation for the dynamic contact angle (Fricke et al., 2019) expresses the fundamental relationship between the rate of change of the contact angle and the structure of the transporting velocity field. In the present study, it serves as a reference to verify the numerical transport of the contact angle. We employ the geometrical Volume-of-Fluid (VOF) method on a structured Cartesian grid to solve the hyperbolic transport equation for the interface in two spatial dimensions. We introduce generalizations of the Youngs and ELVIRA methods to reconstruct the interface close to the domain boundary. Both methods deliver first-order convergent results for the motion of the contact line. However, the Boundary Youngs method shows strong oscillations in the numerical contact angle that do not converge with mesh refinement. In contrast to that, the Boundary ELVIRA method provides linear convergence of the numerical contact angle transport.

Typ des Eintrags: Report
Erschienen: 2019
Autor(en): Fricke, Mathis ; Marić, Tomislav ; Bothe, Dieter
Art des Eintrags: Bibliographie
Titel: Contact line advection using the geometrical Volume-of-Fluid method
Sprache: Deutsch
Publikationsjahr: 11 Dezember 2019
URL / URN: http://arxiv.org/pdf/1907.01785
Kurzbeschreibung (Abstract):

We consider the geometrical problem of the passive transport of a hypersurface by a prescribed velocity field in the special case where the hypersurface intersects the domain boundary. This problem emerges from the discretization of continuum models for dynamic wetting. The kinematic evolution equation for the dynamic contact angle (Fricke et al., 2019) expresses the fundamental relationship between the rate of change of the contact angle and the structure of the transporting velocity field. In the present study, it serves as a reference to verify the numerical transport of the contact angle. We employ the geometrical Volume-of-Fluid (VOF) method on a structured Cartesian grid to solve the hyperbolic transport equation for the interface in two spatial dimensions. We introduce generalizations of the Youngs and ELVIRA methods to reconstruct the interface close to the domain boundary. Both methods deliver first-order convergent results for the motion of the contact line. However, the Boundary Youngs method shows strong oscillations in the numerical contact angle that do not converge with mesh refinement. In contrast to that, the Boundary ELVIRA method provides linear convergence of the numerical contact angle transport.

Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B01: Modellierung und VOF-basierte Simulation der Multiphysik irreversibler thermodynamischer Transferprozesse an dynamischen Kontaktlinien
Profilbereiche
Profilbereiche > Thermo-Fluids & Interfaces
Hinterlegungsdatum: 11 Dez 2019 12:30
Letzte Änderung: 05 Jun 2023 12:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen