Schneider, P. ; Kienzler, R. (2018)
Modeling of a Reissner-type plate theory for monoclinic material.
21st International Conference on Composite Structures (ICCS). Bologna, Italy (04.09.2018-07.09.2018)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
First a hierarchy of monoclinic plate theories is derived using the a-priori-assumption free uniform-approximation approach, which is based upon a structured truncation of the elastic potential. An a-priori estimate proves that the so-derived higher-order theories have indeed a higher rate of convergence with respect to the relative thickness of the plate. By the use of a pseudo-reduction approach the number of PDEs to be solved is reduced significantly. The pseudo-reduced first-order theory turns out to be the classical monoclinic plate theory, whereas, the second-order theory is not determined uniquely by the approach. Uniqueness can be achieved by the introduction of an orthogonal decomposition of higher-order gradients of the in-plane displacement. The final second-order monoclinic plate theory coincides with the Reissner-Mindlin theory for the special case of isotropic material.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2018 |
Autor(en): | Schneider, P. ; Kienzler, R. |
Art des Eintrags: | Bibliographie |
Titel: | Modeling of a Reissner-type plate theory for monoclinic material |
Sprache: | Englisch |
Publikationsjahr: | 2018 |
Veranstaltungstitel: | 21st International Conference on Composite Structures (ICCS) |
Veranstaltungsort: | Bologna, Italy |
Veranstaltungsdatum: | 04.09.2018-07.09.2018 |
Kurzbeschreibung (Abstract): | First a hierarchy of monoclinic plate theories is derived using the a-priori-assumption free uniform-approximation approach, which is based upon a structured truncation of the elastic potential. An a-priori estimate proves that the so-derived higher-order theories have indeed a higher rate of convergence with respect to the relative thickness of the plate. By the use of a pseudo-reduction approach the number of PDEs to be solved is reduced significantly. The pseudo-reduced first-order theory turns out to be the classical monoclinic plate theory, whereas, the second-order theory is not determined uniquely by the approach. Uniqueness can be achieved by the introduction of an orthogonal decomposition of higher-order gradients of the in-plane displacement. The final second-order monoclinic plate theory coincides with the Reissner-Mindlin theory for the special case of isotropic material. |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Konstruktiven Leichtbau und Bauweisen-KLuB (2023 umbenannt in Leichtbau und Strukturmechanik (LSM)) |
Hinterlegungsdatum: | 21 Nov 2019 12:21 |
Letzte Änderung: | 21 Nov 2019 12:21 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |