TU Darmstadt / ULB / TUbiblio

Dual-energy extension of the uniform-approximation approach

Schneider, P. ; Kienzler, R. (2019)
Dual-energy extension of the uniform-approximation approach.
In: PAMM — Proceedings in Applied Mathematics and Mechanics, 19 (1)
doi: 10.1002/pamm.201900222
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Abstract In the talk an extension of the uniform-approximation approach, that relies on the truncation of the elastic energy after a certain power of a geometric scaling factor, towards an analogous truncation of the dual energy is proposed. On the one hand, this allows for a derivation of fully defined boundary value problems including compatible displacement boundary conditions. On the other hand, the extension enables us to provide an a priori error estimate for the systematic error of the arising approximative models with respect to the exact three-dimensional solution. The approach is compared to the approach of a fixed kinematic assumption for the displacement field which is widely used in engineering. We show that the later approach leads in general to a more complex model for a comparable approximation accuracy so that the consistent approximation approach is to prefer.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Schneider, P. ; Kienzler, R.
Art des Eintrags: Bibliographie
Titel: Dual-energy extension of the uniform-approximation approach
Sprache: Englisch
Publikationsjahr: 18 November 2019
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM — Proceedings in Applied Mathematics and Mechanics
Jahrgang/Volume einer Zeitschrift: 19
(Heft-)Nummer: 1
DOI: 10.1002/pamm.201900222
URL / URN: https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.2019002...
Kurzbeschreibung (Abstract):

Abstract In the talk an extension of the uniform-approximation approach, that relies on the truncation of the elastic energy after a certain power of a geometric scaling factor, towards an analogous truncation of the dual energy is proposed. On the one hand, this allows for a derivation of fully defined boundary value problems including compatible displacement boundary conditions. On the other hand, the extension enables us to provide an a priori error estimate for the systematic error of the arising approximative models with respect to the exact three-dimensional solution. The approach is compared to the approach of a fixed kinematic assumption for the displacement field which is widely used in engineering. We show that the later approach leads in general to a more complex model for a comparable approximation accuracy so that the consistent approximation approach is to prefer.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Konstruktiven Leichtbau und Bauweisen-KLuB (2023 umbenannt in Leichtbau und Strukturmechanik (LSM))
Hinterlegungsdatum: 21 Nov 2019 12:07
Letzte Änderung: 21 Nov 2019 12:07
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen