Li, D. ; Marchisio, D. ; Hasse, C. ; Lucas, D. (2019)
Comparison of Eulerian QBMM and classical Eulerian–Eulerian method for the simulation of polydisperse bubbly flows.
In: AIChE Journal, 65 (11)
doi: 10.1002/aic.16732
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Abstract The spatial gas distribution of poly-disperse bubbly flows depends greatly on the bubble size. To reflect the resulting polycelerity, more than two momentum balance equations (typically for the gas and liquid phases) have to be considered, as done in the multifluid approach. The inhomogeneous multiple-size group model follows this approach, also combined with a population balance model. As an alternative, in a previous work, an Eulerian quadrature-based moments method (E-QBMM) was implemented in OpenFOAM; however, only the drag force was included. In this work, different nondrag forces (lift, wall lubrication, and turbulent dispersion) are added to enable more complex test cases to be simulated. Simulation results obtained using E-QBMM are compared with the classical E–E method and validated against experimental data for different test cases. The results show that there is good agreement between E-QBMM and E–E methods for mono-disperse cases, but E-QBMM can better simulate the separation and segregation of small and large bubbles.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Li, D. ; Marchisio, D. ; Hasse, C. ; Lucas, D. |
Art des Eintrags: | Bibliographie |
Titel: | Comparison of Eulerian QBMM and classical Eulerian–Eulerian method for the simulation of polydisperse bubbly flows |
Sprache: | Englisch |
Publikationsjahr: | 25 Juli 2019 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | AIChE Journal |
Jahrgang/Volume einer Zeitschrift: | 65 |
(Heft-)Nummer: | 11 |
DOI: | 10.1002/aic.16732 |
URL / URN: | https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.16... |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Abstract The spatial gas distribution of poly-disperse bubbly flows depends greatly on the bubble size. To reflect the resulting polycelerity, more than two momentum balance equations (typically for the gas and liquid phases) have to be considered, as done in the multifluid approach. The inhomogeneous multiple-size group model follows this approach, also combined with a population balance model. As an alternative, in a previous work, an Eulerian quadrature-based moments method (E-QBMM) was implemented in OpenFOAM; however, only the drag force was included. In this work, different nondrag forces (lift, wall lubrication, and turbulent dispersion) are added to enable more complex test cases to be simulated. Simulation results obtained using E-QBMM are compared with the classical E–E method and validated against experimental data for different test cases. The results show that there is good agreement between E-QBMM and E–E methods for mono-disperse cases, but E-QBMM can better simulate the separation and segregation of small and large bubbles. |
Freie Schlagworte: | bubbly flow, E–E method, E-QBMM, non-drag forces, wall peak |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS) |
Hinterlegungsdatum: | 20 Nov 2019 06:34 |
Letzte Änderung: | 05 Dez 2023 08:13 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Comparison of Eulerian QBMM and classical Eulerian–Eulerian method for the simulation of polydisperse bubbly flows. (deposited 04 Dez 2023 13:48)
- Comparison of Eulerian QBMM and classical Eulerian–Eulerian method for the simulation of polydisperse bubbly flows. (deposited 20 Nov 2019 06:34) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |