Boba, Patrick (2019)
Graphenrekonstruktion anhand abhängiger Zeitreihen in biologischen Netzwerken.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Die Biologie befasst sich mit dem Aufbau und der Organisation von Lebewesen. Bei beiden Aspekten finden sich auf verschiedenen Abstraktionsebenen Phänomene, die sich als Netzwerke interpretieren lassen. Ein makroskopisches Beispiel dafür sind Räuber-BeuteBeziehungen (z. B. Größe einer Fuchspopulation in Abhängigkeit von ihren Beutetieren wie Kaninchen, Hühnern, etc.). Es ist leicht ersichtlich, dass die Größen der Populationen jeweils voneinander abhängen und eine wechselseitige Dynamik widerspiegeln. Auf molekularer Ebene gibt es ebenfalls Beispiele für Interaktionen, die sich über ein dynamisches Netzwerk beschreiben lassen, etwa bei zellulären Prozessen. Ein Beispiel hierfür ist die Katalyse einer chemischen Reaktion mittels eines Enzyms. Die Konzentration des Enzyms und der beteiligten Substanzen beeinflussen dabei die Geschwindigkeit, mit welcher der Stoffwechselprozess abläuft. Mit dieser (makro)molekularen Ebene beschäftigt sich diese Arbeit. Wie wichtig ein funktionierendes Netzwerk ist, wird deutlich wenn man ein gestörtes System betrachtet, etwa wenn eingeschleppte Arten ein Ökosystem aus dem Gleichgewicht bringen. Ein aktuelles Beispiel dazu ist der amerikanische Kalikokrebs (Orconectes immunis ), der sich derzeit in Europa schnell ausbreitet, da ihm natürliche Feinde fehlen. Gleichzeitig bedroht er durch seinen Ressourcenverbrauch Tierarten wie Libellen, Amphibien und einheimische Krebse. Auf zellulärer Ebene kann eine Störung des Netzwerks der DNA-Reparatur und der Zellzykluskontrolle zu der Entstehung von Krebs führen. Die DNA-Reparatur stellt ein komplexes System aus verschiedenen Proteinen und DNA dar. Der Ausfall eines Bestandteils dieses Systems kann für den Reparaturprozess verheerende Folgen haben. Es wird deutlich wie wichtig das Verständnis der Dynamik dieser Systeme ist, um Analysen und Prognosen für den Zustand dieser Systeme zu erstellen. In den beiden genannten Beispielen kann es helfen die Entstehung von Krebs besser vorherzusagen, bzw. bedrohte Tier- und Pflanzenarten zu schützen. Anhand von Netzwerken, die die Interaktion von Proteinen, DNA und RNA darstellen, ist das Ziel dieser Arbeit, den messbaren Informationsfluss zwischen verschiedenen beteiligten Elementen zu erkennen und mit dessen Hilfe die Struktur des Netzwerks zu rekonstruieren. Zu diesem Zweck werden die Zeitreihen der einzelnen Knoten mittels verschiedener statistischer und informationstheoretischer Maße miteinander in Beziehung gesetzt. Bei der Auswahl der verschiedenen Maße greife ich sowohl auf klassische statistische Maße (z. B. Korrelationskoeffizienten), als auch auf informationstheoretische (auf Shannon-Entropie basierende) Methoden zurück, die in den letzten Jahren im Bereich der Biologie populärer gewordenen sind. Der Vergleich dieser Methoden findet durch mehrere Beispielsysteme statt, die ich in drei verschiedene Kategorien eingeteilt habe. Allen Beispielen gemein ist die zeitliche Simulation, um ein dynamisches, veränderliches System abzubilden. Mit Hilfe der Messung des Zusammenhangs der einzelnen Knoten über die Zeit, soll im Umkehrschluss auf die Topologie des zugrunde liegenden Netzwerks zurück geschlossen werden. In die erste Kategorie fällt ein einfaches Differentialgleichungssystem, welches zwei Feedback-Schleifen miteinander koppelt. Die Parametrisierung des Netzwerks sorgt für eine stabile Schwingung der beiden Schleifen um ihren jeweiligen Mittelwert. Als nächste Kategorie werden zwei verschiedene Typen von Zufallsgraphen erzeugt. Der erste wird durch einem von mir entworfenen Algorithmus erstellt, der eine bestimmte Menge an Knoten erzeugt, die mit einer bestimmten Anzahl von Eingangskanten und Ausgangskanten verbunden sind. Der zweite Typus ist ein sogenanntes skalenfreies Netz. Diese Netzwerktopologie kann in vielen Systemen wieder gefunden werden. Dazu gehören sowohl biologische als auch auch digitale soziale Netzwerke. In der letzten Kategorie wende ich die genannten Methoden auf verschiedene Beispiele aus der BioModels Database an. Diese Datenbank bietet sich aufgrund der umfangreichen Datensätze an und enthält viele biochemische Netzwerke, z. B. Protein-ProteinInteraktion, Protein-RNA-Interaktion usw. Abschließend diskutiere ich die vorgelegten Ergebnisse und gebe einen Ausblick auf die Möglichkeiten diese Ansätze weiter zu verfolgen und auszubauen. Des Weiteren wurden im Zuge dieser Arbeit verschiedene Software Tools von mir entwickelt, bzw. studentische Arbeiten zur Entwicklung betreut, die für die Durchführung der hier gezeigten Analysen wichtig waren. Diese werden in einem getrennten Abschnitt besprochen.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2019 | ||||
Autor(en): | Boba, Patrick | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Graphenrekonstruktion anhand abhängiger Zeitreihen in biologischen Netzwerken | ||||
Sprache: | Deutsch | ||||
Referenten: | Hamacher, Prof. Dr. Kay ; Thiel, Prof. Dr. Gerhard ; Stein, Prof. Dr. Viktor ; Dreizler, Prof. Dr. Andreas | ||||
Publikationsjahr: | 29 September 2019 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 5 September 2019 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/9128 | ||||
Kurzbeschreibung (Abstract): | Die Biologie befasst sich mit dem Aufbau und der Organisation von Lebewesen. Bei beiden Aspekten finden sich auf verschiedenen Abstraktionsebenen Phänomene, die sich als Netzwerke interpretieren lassen. Ein makroskopisches Beispiel dafür sind Räuber-BeuteBeziehungen (z. B. Größe einer Fuchspopulation in Abhängigkeit von ihren Beutetieren wie Kaninchen, Hühnern, etc.). Es ist leicht ersichtlich, dass die Größen der Populationen jeweils voneinander abhängen und eine wechselseitige Dynamik widerspiegeln. Auf molekularer Ebene gibt es ebenfalls Beispiele für Interaktionen, die sich über ein dynamisches Netzwerk beschreiben lassen, etwa bei zellulären Prozessen. Ein Beispiel hierfür ist die Katalyse einer chemischen Reaktion mittels eines Enzyms. Die Konzentration des Enzyms und der beteiligten Substanzen beeinflussen dabei die Geschwindigkeit, mit welcher der Stoffwechselprozess abläuft. Mit dieser (makro)molekularen Ebene beschäftigt sich diese Arbeit. Wie wichtig ein funktionierendes Netzwerk ist, wird deutlich wenn man ein gestörtes System betrachtet, etwa wenn eingeschleppte Arten ein Ökosystem aus dem Gleichgewicht bringen. Ein aktuelles Beispiel dazu ist der amerikanische Kalikokrebs (Orconectes immunis ), der sich derzeit in Europa schnell ausbreitet, da ihm natürliche Feinde fehlen. Gleichzeitig bedroht er durch seinen Ressourcenverbrauch Tierarten wie Libellen, Amphibien und einheimische Krebse. Auf zellulärer Ebene kann eine Störung des Netzwerks der DNA-Reparatur und der Zellzykluskontrolle zu der Entstehung von Krebs führen. Die DNA-Reparatur stellt ein komplexes System aus verschiedenen Proteinen und DNA dar. Der Ausfall eines Bestandteils dieses Systems kann für den Reparaturprozess verheerende Folgen haben. Es wird deutlich wie wichtig das Verständnis der Dynamik dieser Systeme ist, um Analysen und Prognosen für den Zustand dieser Systeme zu erstellen. In den beiden genannten Beispielen kann es helfen die Entstehung von Krebs besser vorherzusagen, bzw. bedrohte Tier- und Pflanzenarten zu schützen. Anhand von Netzwerken, die die Interaktion von Proteinen, DNA und RNA darstellen, ist das Ziel dieser Arbeit, den messbaren Informationsfluss zwischen verschiedenen beteiligten Elementen zu erkennen und mit dessen Hilfe die Struktur des Netzwerks zu rekonstruieren. Zu diesem Zweck werden die Zeitreihen der einzelnen Knoten mittels verschiedener statistischer und informationstheoretischer Maße miteinander in Beziehung gesetzt. Bei der Auswahl der verschiedenen Maße greife ich sowohl auf klassische statistische Maße (z. B. Korrelationskoeffizienten), als auch auf informationstheoretische (auf Shannon-Entropie basierende) Methoden zurück, die in den letzten Jahren im Bereich der Biologie populärer gewordenen sind. Der Vergleich dieser Methoden findet durch mehrere Beispielsysteme statt, die ich in drei verschiedene Kategorien eingeteilt habe. Allen Beispielen gemein ist die zeitliche Simulation, um ein dynamisches, veränderliches System abzubilden. Mit Hilfe der Messung des Zusammenhangs der einzelnen Knoten über die Zeit, soll im Umkehrschluss auf die Topologie des zugrunde liegenden Netzwerks zurück geschlossen werden. In die erste Kategorie fällt ein einfaches Differentialgleichungssystem, welches zwei Feedback-Schleifen miteinander koppelt. Die Parametrisierung des Netzwerks sorgt für eine stabile Schwingung der beiden Schleifen um ihren jeweiligen Mittelwert. Als nächste Kategorie werden zwei verschiedene Typen von Zufallsgraphen erzeugt. Der erste wird durch einem von mir entworfenen Algorithmus erstellt, der eine bestimmte Menge an Knoten erzeugt, die mit einer bestimmten Anzahl von Eingangskanten und Ausgangskanten verbunden sind. Der zweite Typus ist ein sogenanntes skalenfreies Netz. Diese Netzwerktopologie kann in vielen Systemen wieder gefunden werden. Dazu gehören sowohl biologische als auch auch digitale soziale Netzwerke. In der letzten Kategorie wende ich die genannten Methoden auf verschiedene Beispiele aus der BioModels Database an. Diese Datenbank bietet sich aufgrund der umfangreichen Datensätze an und enthält viele biochemische Netzwerke, z. B. Protein-ProteinInteraktion, Protein-RNA-Interaktion usw. Abschließend diskutiere ich die vorgelegten Ergebnisse und gebe einen Ausblick auf die Möglichkeiten diese Ansätze weiter zu verfolgen und auszubauen. Des Weiteren wurden im Zuge dieser Arbeit verschiedene Software Tools von mir entwickelt, bzw. studentische Arbeiten zur Entwicklung betreut, die für die Durchführung der hier gezeigten Analysen wichtig waren. Diese werden in einem getrennten Abschnitt besprochen. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-91284 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie | ||||
Fachbereich(e)/-gebiet(e): | 10 Fachbereich Biologie 10 Fachbereich Biologie > Computational Biology and Simulation |
||||
Hinterlegungsdatum: | 03 Nov 2019 20:55 | ||||
Letzte Änderung: | 03 Nov 2019 20:55 | ||||
PPN: | |||||
Referenten: | Hamacher, Prof. Dr. Kay ; Thiel, Prof. Dr. Gerhard ; Stein, Prof. Dr. Viktor ; Dreizler, Prof. Dr. Andreas | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 5 September 2019 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |