TU Darmstadt / ULB / TUbiblio

A block Coordinate Descent Algorithm for Sparse Gaussian Graphical Model Interference with Laplacian Constraints

Liu, Tianyi ; Hoang-Minh, T. ; Yang, Yang ; Pesavento, Marius (2019)
A block Coordinate Descent Algorithm for Sparse Gaussian Graphical Model Interference with Laplacian Constraints.
8th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP'19). Guadeloupe, West Indies (15.12.2019-18.12.2019)
doi: 10.1109/CAMSAP45676.2019.9022643
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We consider the problem of inferring sparse Gaussian graphical models with Laplacian constraints, which can also be viewed as learning a graph Laplacian such that the observed graph signals are smooth with respect to it. A block coordinate descent algorithm is proposed for the resulting linearly constrained log-determinant maximum likelihood estimation problem with sparse regularization. Simulation results on synthetic data show the efficiency of our proposed algorithm.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Liu, Tianyi ; Hoang-Minh, T. ; Yang, Yang ; Pesavento, Marius
Art des Eintrags: Bibliographie
Titel: A block Coordinate Descent Algorithm for Sparse Gaussian Graphical Model Interference with Laplacian Constraints
Sprache: Englisch
Publikationsjahr: 19 Dezember 2019
Verlag: IEEE
Buchtitel: CAMSAP 2019: Proceedings
Veranstaltungstitel: 8th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP'19)
Veranstaltungsort: Guadeloupe, West Indies
Veranstaltungsdatum: 15.12.2019-18.12.2019
DOI: 10.1109/CAMSAP45676.2019.9022643
Kurzbeschreibung (Abstract):

We consider the problem of inferring sparse Gaussian graphical models with Laplacian constraints, which can also be viewed as learning a graph Laplacian such that the observed graph signals are smooth with respect to it. A block coordinate descent algorithm is proposed for the resulting linearly constrained log-determinant maximum likelihood estimation problem with sparse regularization. Simulation results on synthetic data show the efficiency of our proposed algorithm.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme
Hinterlegungsdatum: 01 Nov 2019 13:10
Letzte Änderung: 15 Nov 2022 10:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen