TU Darmstadt / ULB / TUbiblio

Residual estimates for post-processors in elliptic problems

Dedner, Andreas ; Giesselmann, Jan ; Pryer, Tristan ; Ryan, Jennifer K. (2019)
Residual estimates for post-processors in elliptic problems.
doi: 10.48550/arXiv.1906.04658
Report, Bibliographie

Kurzbeschreibung (Abstract)

In this work we examine a posteriori error control for post-processed approximations to elliptic boundary value problems. We introduce a class of post-processing operator that `tweaks' a wide variety of existing post-processing techniques to enable efficient and reliable a posteriori bounds to be proven. This ultimately results in optimal error control for all manner of reconstruction operators, including those that superconverge. We showcase our results by applying them to two classes of very popular reconstruction operators, the Smoothness-Increasing Accuracy-Enhancing filter and Superconvergent Patch Recovery. Extensive numerical tests are conducted that confirm our analytic findings.

Typ des Eintrags: Report
Erschienen: 2019
Autor(en): Dedner, Andreas ; Giesselmann, Jan ; Pryer, Tristan ; Ryan, Jennifer K.
Art des Eintrags: Bibliographie
Titel: Residual estimates for post-processors in elliptic problems
Sprache: Englisch
Publikationsjahr: 11 Juni 2019
Verlag: arXiV
Reihe: Numerical Analysis
Auflage: 1. Version
DOI: 10.48550/arXiv.1906.04658
URL / URN: https://arxiv.org/abs/1906.04658
Kurzbeschreibung (Abstract):

In this work we examine a posteriori error control for post-processed approximations to elliptic boundary value problems. We introduce a class of post-processing operator that `tweaks' a wide variety of existing post-processing techniques to enable efficient and reliable a posteriori bounds to be proven. This ultimately results in optimal error control for all manner of reconstruction operators, including those that superconverge. We showcase our results by applying them to two classes of very popular reconstruction operators, the Smoothness-Increasing Accuracy-Enhancing filter and Superconvergent Patch Recovery. Extensive numerical tests are conducted that confirm our analytic findings.

Zusätzliche Informationen:

Preprint

Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 21 Okt 2019 09:39
Letzte Änderung: 29 Mai 2024 10:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen