Busquierand, M. ; Lopez-Sanchez, Juan M. ; Bargiel, D. (2019)
Added Value of Coherent Copolar Polarimetry at X-Band for Crop-Type Mapping.
In: IEEE Geoscience and Remote Sensing Letters
doi: 10.1109/LGRS.2019.2933738
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
A set of six spotlight TerraSAR-X images acquired at HH and VV polarizations in 2009 over an agricultural site in Germany are employed to evaluate the potential contribution of polarimetric features derived from this copolar mode to crop-type mapping. Results show that the inclusion of the correlation between copolar channels in the set of input features of the classifier consistently improves the classification performance with respect to the use of only backscattering coefficients. An increase around 8-10 in overall accuracy, depending on the experiment setup, is achieved. Both user and producer accuracies are improved for all crop types, being the most noticeable contribution for barley, oat, and sugar beet. Different sets of input features, as well as classification and evaluation strategies, are tested in order to assess the robustness of this contribution.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Busquierand, M. ; Lopez-Sanchez, Juan M. ; Bargiel, D. |
Art des Eintrags: | Bibliographie |
Titel: | Added Value of Coherent Copolar Polarimetry at X-Band for Crop-Type Mapping |
Sprache: | Englisch |
Publikationsjahr: | 21 August 2019 |
Verlag: | IEEE |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Geoscience and Remote Sensing Letters |
DOI: | 10.1109/LGRS.2019.2933738 |
URL / URN: | https://ieeexplore.ieee.org/abstract/document/8809193 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | A set of six spotlight TerraSAR-X images acquired at HH and VV polarizations in 2009 over an agricultural site in Germany are employed to evaluate the potential contribution of polarimetric features derived from this copolar mode to crop-type mapping. Results show that the inclusion of the correlation between copolar channels in the set of input features of the classifier consistently improves the classification performance with respect to the use of only backscattering coefficients. An increase around 8-10 in overall accuracy, depending on the experiment setup, is achieved. Both user and producer accuracies are improved for all crop types, being the most noticeable contribution for barley, oat, and sugar beet. Different sets of input features, as well as classification and evaluation strategies, are tested in order to assess the robustness of this contribution. |
Freie Schlagworte: | Agriculture, Correlation, Training, Backscatter, Testing, Polarimetry, Synthetic aperture radar, Agriculture, classification, polarimetry, synthetic aperture radar (SAR) |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie > Fernerkundung und Bildanalyse |
Hinterlegungsdatum: | 04 Okt 2019 06:28 |
Letzte Änderung: | 04 Okt 2019 06:28 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |