TU Darmstadt / ULB / TUbiblio

Improving Generalization by Incorporating Coverage in Natural Language Inference

Moosavi, Nafise Sadat ; Utama, Prasetya ; Rücklé, Andreas ; Gurevych, Iryna (2019)
Improving Generalization by Incorporating Coverage in Natural Language Inference.
doi: 10.48550/arXiv.1909.08940
Report, Bibliographie

Kurzbeschreibung (Abstract)

The task of natural language inference (NLI) is to identify the relation between the given premise and hypothesis. While recent NLI models achieve very high performance on individual datasets, they fail to generalize across similar datasets. This indicates that they are solving NLI datasets instead of the task itself. In order to improve generalization, we propose to extend the input representations with an abstract view of the relation between the hypothesis and the premise, i.e., how well the individual words, or word n-grams, of the hypothesis are covered by the premise. Our experiments show that the use of this information considerably improves generalization across different NLI datasets without requiring any external knowledge or additional data. Finally, we show that using the coverage information is not only beneficial for improving the performance across different datasets of the same task. The resulting generalization improves the performance across datasets that belong to similar but not the same tasks.

Typ des Eintrags: Report
Erschienen: 2019
Autor(en): Moosavi, Nafise Sadat ; Utama, Prasetya ; Rücklé, Andreas ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Improving Generalization by Incorporating Coverage in Natural Language Inference
Sprache: Englisch
Publikationsjahr: 20 September 2019
Verlag: arXiv
Reihe: Computation and Language
Auflage: 1.Version
DOI: 10.48550/arXiv.1909.08940
URL / URN: https://arxiv.org/abs/1909.08940
Kurzbeschreibung (Abstract):

The task of natural language inference (NLI) is to identify the relation between the given premise and hypothesis. While recent NLI models achieve very high performance on individual datasets, they fail to generalize across similar datasets. This indicates that they are solving NLI datasets instead of the task itself. In order to improve generalization, we propose to extend the input representations with an abstract view of the relation between the hypothesis and the premise, i.e., how well the individual words, or word n-grams, of the hypothesis are covered by the premise. Our experiments show that the use of this information considerably improves generalization across different NLI datasets without requiring any external knowledge or additional data. Finally, we show that using the coverage information is not only beneficial for improving the performance across different datasets of the same task. The resulting generalization improves the performance across datasets that belong to similar but not the same tasks.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 23 Sep 2019 05:37
Letzte Änderung: 17 Aug 2023 10:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen