TU Darmstadt / ULB / TUbiblio

On Friedmann's Subexponential Lower Bound for Zadeh's Pivot Rule

Disser, Y. ; Hopp, A. V.
Hrsg.: Lodi, A. ; Nagarajan, V. (2019)
On Friedmann's Subexponential Lower Bound for Zadeh's Pivot Rule.
20th Interantional Conference on Integer Programming and Combinatorial Optimization (IPCO 2019). Ann Arbor, USA (22.05.2019-24.05.2019)
doi: 10.1007/978-3-030-17953-3_13
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The question whether the Simplex method admits a polynomial time pivot rule remains one of the most important open questions in discrete optimization. Zadeh's pivot rule had long been a promising candidate, before Friedmann (IPCO, 2011) presented a subexponential instance, based on a close relation to policy iteration algorithms for Markov decision processes (MDPs). We investigate Friedmann's lower bound example and exhibit three flaws in the corresponding MDP: We show that (a) the initial policy for the policy iteration does not produce the required occurrence records and improving switches, (b) the specification of occurrence records is not entirely accurate, and (c) the sequence of improving switches used by Friedmann does not consistently follow Zadeh's pivot rule. In this paper, we resolve each of these issues by adapting Friedmann's construction. While the first two issues require only minor changes to the specifications of the initial policy and the occurrence records, the third issue requires a significantly more sophisticated ordering and associated tie-breaking rule that are in accordance with the Least-Entered pivot rule. Most importantly, our changes do not affect the macroscopic structure of Friedmann's MDP, and thus we are able to retain his original result.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Herausgeber: Lodi, A. ; Nagarajan, V.
Autor(en): Disser, Y. ; Hopp, A. V.
Art des Eintrags: Bibliographie
Titel: On Friedmann's Subexponential Lower Bound for Zadeh's Pivot Rule
Sprache: Englisch
Publikationsjahr: 2019
Verlag: Springer
Buchtitel: Integer Programming and Combinatorial Optimization
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 11480
Veranstaltungstitel: 20th Interantional Conference on Integer Programming and Combinatorial Optimization (IPCO 2019)
Veranstaltungsort: Ann Arbor, USA
Veranstaltungsdatum: 22.05.2019-24.05.2019
DOI: 10.1007/978-3-030-17953-3_13
Zugehörige Links:
Kurzbeschreibung (Abstract):

The question whether the Simplex method admits a polynomial time pivot rule remains one of the most important open questions in discrete optimization. Zadeh's pivot rule had long been a promising candidate, before Friedmann (IPCO, 2011) presented a subexponential instance, based on a close relation to policy iteration algorithms for Markov decision processes (MDPs). We investigate Friedmann's lower bound example and exhibit three flaws in the corresponding MDP: We show that (a) the initial policy for the policy iteration does not produce the required occurrence records and improving switches, (b) the specification of occurrence records is not entirely accurate, and (c) the sequence of improving switches used by Friedmann does not consistently follow Zadeh's pivot rule. In this paper, we resolve each of these issues by adapting Friedmann's construction. While the first two issues require only minor changes to the specifications of the initial policy and the occurrence records, the third issue requires a significantly more sophisticated ordering and associated tie-breaking rule that are in accordance with the Least-Entered pivot rule. Most importantly, our changes do not affect the macroscopic structure of Friedmann's MDP, and thus we are able to retain his original result.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
04 Fachbereich Mathematik > Optimierung > Discrete Optimization
Hinterlegungsdatum: 20 Sep 2019 10:35
Letzte Änderung: 04 Jan 2022 09:11
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen