TU Darmstadt / ULB / TUbiblio

Branch-and-cut for linear programs with overlapping SOS1 constraints

Fischer, Tobias ; Pfetsch, Marc E. (2018)
Branch-and-cut for linear programs with overlapping SOS1 constraints.
In: Mathematical Programming Computation, 10 (1)
doi: 10.1007/s12532-017-0122-5
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

SOS1 constraints require that at most one of a given set of variables is nonzero. In this article, we investigate a branch-and-cut algorithm to solve linear programs with SOS1 constraints. We focus on the case in which the SOS1 constraints overlap. The corresponding conflict graph can algorithmically be exploited, for instance, for improved branching rules, preprocessing, primal heuristics, and cutting planes. In an extensive computational study, we evaluate the components of our implementation on instances for three different applications. We also demonstrate the effectiveness of this approach by comparing it to the solution of a mixed-integer programming formulation, if the variables appearing in SOS1 constraints ar bounded.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Fischer, Tobias ; Pfetsch, Marc E.
Art des Eintrags: Bibliographie
Titel: Branch-and-cut for linear programs with overlapping SOS1 constraints
Sprache: Englisch
Publikationsjahr: März 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Mathematical Programming Computation
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 1
DOI: 10.1007/s12532-017-0122-5
URL / URN: https://doi.org/10.1007/s12532-017-0122-5
Kurzbeschreibung (Abstract):

SOS1 constraints require that at most one of a given set of variables is nonzero. In this article, we investigate a branch-and-cut algorithm to solve linear programs with SOS1 constraints. We focus on the case in which the SOS1 constraints overlap. The corresponding conflict graph can algorithmically be exploited, for instance, for improved branching rules, preprocessing, primal heuristics, and cutting planes. In an extensive computational study, we evaluate the components of our implementation on instances for three different applications. We also demonstrate the effectiveness of this approach by comparing it to the solution of a mixed-integer programming formulation, if the variables appearing in SOS1 constraints ar bounded.

Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
04 Fachbereich Mathematik > Optimierung > Discrete Optimization
Hinterlegungsdatum: 19 Sep 2019 11:36
Letzte Änderung: 19 Sep 2019 11:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen