Wen, Qingbo ; Yu, Zhaoju ; Liu, Xingmin ; Bruns, Sebastian ; Yin, Xiaowei ; Eriiksson, Mirva ; Shen, Zhijian James ; Riedel, Ralf (2019)
Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfCxN1-x/C ceramic nanocomposites.
In: Journal of Materials Chemistry C, 7 (34)
doi: 10.1039/c9tc02369k
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
For the first time, single-source-precursor synthesized dense monolithic SiC/HfCxN1-x/C ceramic nanocomposites with outstanding electromagnetic (EM) shielding performance at temperatures up to 600 degrees C are reported. The total shielding effectiveness (SET) of the SiC/HfCxN1-x/C monolith is >40 dB at 600 degrees C, which is superior than most of the reported EM shielding materials under the same conditions. Compared with a Hf-free SiC/C monolith, the SiC/HfCxN1-x/C monolith possesses superior EM shielding performance due to the presence of a highly conductive HfCxN1-x phase. Moreover, the HfCxN1-x-particles are covered by a carbon layer forming core-shell nanoparticles connected with graphite-like carbon ribbons, which result in electrically conductive networks within the semiconducting beta-SiC matrix. In addition, the hardness, Young's modulus and flexural strength of the dense SiC/HfCxN1-x/C monolith are measured to be 29 +/- 4 GPa, 381 +/- 29 GPa and 320 +/- 25 MPa, respectively. The outstanding EM shielding performance combined with excellent mechanical properties of the dense monolithic SiC/HfCxN1-x/C nanocomposites provides a novel strategy to fabricate EM shielding materials for applications in harsh environments and/or under high mechanical load.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Wen, Qingbo ; Yu, Zhaoju ; Liu, Xingmin ; Bruns, Sebastian ; Yin, Xiaowei ; Eriiksson, Mirva ; Shen, Zhijian James ; Riedel, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfCxN1-x/C ceramic nanocomposites |
Sprache: | Englisch |
Publikationsjahr: | 14 September 2019 |
Verlag: | Royal Soc. Chemistry |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Materials Chemistry C |
Jahrgang/Volume einer Zeitschrift: | 7 |
(Heft-)Nummer: | 34 |
DOI: | 10.1039/c9tc02369k |
URL / URN: | https://pubs.rsc.org/en/content/articlelanding/2019/TC/C9TC0... |
Kurzbeschreibung (Abstract): | For the first time, single-source-precursor synthesized dense monolithic SiC/HfCxN1-x/C ceramic nanocomposites with outstanding electromagnetic (EM) shielding performance at temperatures up to 600 degrees C are reported. The total shielding effectiveness (SET) of the SiC/HfCxN1-x/C monolith is >40 dB at 600 degrees C, which is superior than most of the reported EM shielding materials under the same conditions. Compared with a Hf-free SiC/C monolith, the SiC/HfCxN1-x/C monolith possesses superior EM shielding performance due to the presence of a highly conductive HfCxN1-x phase. Moreover, the HfCxN1-x-particles are covered by a carbon layer forming core-shell nanoparticles connected with graphite-like carbon ribbons, which result in electrically conductive networks within the semiconducting beta-SiC matrix. In addition, the hardness, Young's modulus and flexural strength of the dense SiC/HfCxN1-x/C monolith are measured to be 29 +/- 4 GPa, 381 +/- 29 GPa and 320 +/- 25 MPa, respectively. The outstanding EM shielding performance combined with excellent mechanical properties of the dense monolithic SiC/HfCxN1-x/C nanocomposites provides a novel strategy to fabricate EM shielding materials for applications in harsh environments and/or under high mechanical load. |
Freie Schlagworte: | ELASTIC PROPERTIES; CARBON; COMPOSITES; MICROSTRUCTURE; FABRICATION; HARDNESS; SICN; NANOINDENTATION; LIGHTWEIGHT; BEHAVIOR |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde |
Hinterlegungsdatum: | 19 Sep 2019 05:32 |
Letzte Änderung: | 19 Sep 2019 05:32 |
PPN: | |
Projekte: | Technische Universitat Darmstadt, National Natural Science Foundation of Chiina, Grant Number 51872246, Creative Research Foundation of Science, Technology on Thermostructural Composite Materials Laboratory, Grant Number 6142911040114, Alexander von Humboldt Foundation |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |