TU Darmstadt / ULB / TUbiblio

Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfCxN1-x/C ceramic nanocomposites

Wen, Qingbo ; Yu, Zhaoju ; Liu, Xingmin ; Bruns, Sebastian ; Yin, Xiaowei ; Eriiksson, Mirva ; Shen, Zhijian James ; Riedel, Ralf (2019)
Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfCxN1-x/C ceramic nanocomposites.
In: Journal of Materials Chemistry C, 7 (34)
doi: 10.1039/c9tc02369k
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

For the first time, single-source-precursor synthesized dense monolithic SiC/HfCxN1-x/C ceramic nanocomposites with outstanding electromagnetic (EM) shielding performance at temperatures up to 600 degrees C are reported. The total shielding effectiveness (SET) of the SiC/HfCxN1-x/C monolith is >40 dB at 600 degrees C, which is superior than most of the reported EM shielding materials under the same conditions. Compared with a Hf-free SiC/C monolith, the SiC/HfCxN1-x/C monolith possesses superior EM shielding performance due to the presence of a highly conductive HfCxN1-x phase. Moreover, the HfCxN1-x-particles are covered by a carbon layer forming core-shell nanoparticles connected with graphite-like carbon ribbons, which result in electrically conductive networks within the semiconducting beta-SiC matrix. In addition, the hardness, Young's modulus and flexural strength of the dense SiC/HfCxN1-x/C monolith are measured to be 29 +/- 4 GPa, 381 +/- 29 GPa and 320 +/- 25 MPa, respectively. The outstanding EM shielding performance combined with excellent mechanical properties of the dense monolithic SiC/HfCxN1-x/C nanocomposites provides a novel strategy to fabricate EM shielding materials for applications in harsh environments and/or under high mechanical load.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Wen, Qingbo ; Yu, Zhaoju ; Liu, Xingmin ; Bruns, Sebastian ; Yin, Xiaowei ; Eriiksson, Mirva ; Shen, Zhijian James ; Riedel, Ralf
Art des Eintrags: Bibliographie
Titel: Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfCxN1-x/C ceramic nanocomposites
Sprache: Englisch
Publikationsjahr: 14 September 2019
Verlag: Royal Soc. Chemistry
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Materials Chemistry C
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 34
DOI: 10.1039/c9tc02369k
URL / URN: https://pubs.rsc.org/en/content/articlelanding/2019/TC/C9TC0...
Kurzbeschreibung (Abstract):

For the first time, single-source-precursor synthesized dense monolithic SiC/HfCxN1-x/C ceramic nanocomposites with outstanding electromagnetic (EM) shielding performance at temperatures up to 600 degrees C are reported. The total shielding effectiveness (SET) of the SiC/HfCxN1-x/C monolith is >40 dB at 600 degrees C, which is superior than most of the reported EM shielding materials under the same conditions. Compared with a Hf-free SiC/C monolith, the SiC/HfCxN1-x/C monolith possesses superior EM shielding performance due to the presence of a highly conductive HfCxN1-x phase. Moreover, the HfCxN1-x-particles are covered by a carbon layer forming core-shell nanoparticles connected with graphite-like carbon ribbons, which result in electrically conductive networks within the semiconducting beta-SiC matrix. In addition, the hardness, Young's modulus and flexural strength of the dense SiC/HfCxN1-x/C monolith are measured to be 29 +/- 4 GPa, 381 +/- 29 GPa and 320 +/- 25 MPa, respectively. The outstanding EM shielding performance combined with excellent mechanical properties of the dense monolithic SiC/HfCxN1-x/C nanocomposites provides a novel strategy to fabricate EM shielding materials for applications in harsh environments and/or under high mechanical load.

Freie Schlagworte: ELASTIC PROPERTIES; CARBON; COMPOSITES; MICROSTRUCTURE; FABRICATION; HARDNESS; SICN; NANOINDENTATION; LIGHTWEIGHT; BEHAVIOR
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 19 Sep 2019 05:32
Letzte Änderung: 19 Sep 2019 05:32
PPN:
Projekte: Technische Universitat Darmstadt, National Natural Science Foundation of Chiina, Grant Number 51872246, Creative Research Foundation of Science, Technology on Thermostructural Composite Materials Laboratory, Grant Number 6142911040114, Alexander von Humboldt Foundation
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen