TU Darmstadt / ULB / TUbiblio

Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection

Moosavi, Nafise Sadat ; Born, Leo ; Poesio, Massimo ; Strube, Michael (2019)
Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection.
The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019). Florence, Italy (28.07.2019-02.08.2019)
doi: 10.18653/v1/P19-1408
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The common practice in coreference resolution is to identify and evaluate the maximum span of mentions. The use of maximum spans tangles coreference evaluation with the challenges of mention boundary detection like prepositional phrase attachment. To address this problem, minimum spans are manually annotated in smaller corpora. However, this additional annotation is costly and therefore, this solution does not scale to large corpora. In this paper, we propose the MINA algorithm for automatically extracting minimum spans to benefit from minimum span evaluation in all corpora. We show that the extracted minimum spans by MINA are consistent with those that are manually annotated by experts. Our experiments show that using minimum spans is in particular important in cross-dataset coreference evaluation, in which detected mention boundaries are noisier due to domain shift. We have integrated MINA into https://github.com/ns-moosavi/coval for reporting standard coreference scores based on both maximum and automatically detected minimum spans.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Moosavi, Nafise Sadat ; Born, Leo ; Poesio, Massimo ; Strube, Michael
Art des Eintrags: Bibliographie
Titel: Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection
Sprache: Englisch
Publikationsjahr: 27 Mai 2019
Ort: Florence, Italy
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Veranstaltungstitel: The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019)
Veranstaltungsort: Florence, Italy
Veranstaltungsdatum: 28.07.2019-02.08.2019
DOI: 10.18653/v1/P19-1408
URL / URN: https://aclanthology.org/P19-1408
Zugehörige Links:
Kurzbeschreibung (Abstract):

The common practice in coreference resolution is to identify and evaluate the maximum span of mentions. The use of maximum spans tangles coreference evaluation with the challenges of mention boundary detection like prepositional phrase attachment. To address this problem, minimum spans are manually annotated in smaller corpora. However, this additional annotation is costly and therefore, this solution does not scale to large corpora. In this paper, we propose the MINA algorithm for automatically extracting minimum spans to benefit from minimum span evaluation in all corpora. We show that the extracted minimum spans by MINA are consistent with those that are manually annotated by experts. Our experiments show that using minimum spans is in particular important in cross-dataset coreference evaluation, in which detected mention boundaries are noisier due to domain shift. We have integrated MINA into https://github.com/ns-moosavi/coval for reporting standard coreference scores based on both maximum and automatically detected minimum spans.

Freie Schlagworte: UKP_p_QAEduInf
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 18 Sep 2019 12:20
Letzte Änderung: 05 Jun 2024 07:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen