TU Darmstadt / ULB / TUbiblio

Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution

Barhom, Shany ; Shwartz, Vered ; Eirew, Alon ; Bugert, Michael ; Reimers, Nils ; Dagan, Ido (2019)
Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution.
The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019). Florence, Italy (28.07.2019-02.08.2019)
doi: 10.18653/v1/P19-1409
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Recognizing coreferring events and entities across multiple texts is crucial for many NLP applications. Despite the task’s importance, research focus was given mostly to within-document entity coreference, with rather little attention to the other variants. We propose a neural architecture for cross-document coreference resolution. Inspired by Lee et al. (2012), we jointly model entity and event coreference. We represent an event (entity) mention using its lexical span, surrounding context, and relation to entity (event) mentions via predicate-arguments structures. Our model outperforms the previous state-of-the-art event coreference model on ECB+, while providing the first entity coreference results on this corpus. Our analysis confirms that all our representation elements, including the mention span itself, its context, and the relation to other mentions contribute to the model’s success.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Barhom, Shany ; Shwartz, Vered ; Eirew, Alon ; Bugert, Michael ; Reimers, Nils ; Dagan, Ido
Art des Eintrags: Bibliographie
Titel: Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution
Sprache: Englisch
Publikationsjahr: 27 Mai 2019
Ort: Florence, Italy
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Veranstaltungstitel: The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019)
Veranstaltungsort: Florence, Italy
Veranstaltungsdatum: 28.07.2019-02.08.2019
DOI: 10.18653/v1/P19-1409
URL / URN: https://aclanthology.org/P19-1409
Zugehörige Links:
Kurzbeschreibung (Abstract):

Recognizing coreferring events and entities across multiple texts is crucial for many NLP applications. Despite the task’s importance, research focus was given mostly to within-document entity coreference, with rather little attention to the other variants. We propose a neural architecture for cross-document coreference resolution. Inspired by Lee et al. (2012), we jointly model entity and event coreference. We represent an event (entity) mention using its lexical span, surrounding context, and relation to entity (event) mentions via predicate-arguments structures. Our model outperforms the previous state-of-the-art event coreference model on ECB+, while providing the first entity coreference results on this corpus. Our analysis confirms that all our representation elements, including the mention span itself, its context, and the relation to other mentions contribute to the model’s success.

Freie Schlagworte: UKP_p_DIP
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 18 Sep 2019 12:16
Letzte Änderung: 05 Jun 2024 08:00
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen